using System.Collections.Generic; using System; namespace PF { /** Contains various spline functions. * \ingroup utils */ static class AstarSplines { public static Vector3 CatmullRom (Vector3 previous, Vector3 start, Vector3 end, Vector3 next, float elapsedTime) { // References used: // p.266 GemsV1 // // tension is often set to 0.5 but you can use any reasonable value: // http://www.cs.cmu.edu/~462/projects/assn2/assn2/catmullRom.pdf // // bias and tension controls: // http://local.wasp.uwa.edu.au/~pbourke/miscellaneous/interpolation/ float percentComplete = elapsedTime; float percentCompleteSquared = percentComplete * percentComplete; float percentCompleteCubed = percentCompleteSquared * percentComplete; return previous * (-0.5F*percentCompleteCubed + percentCompleteSquared - 0.5F*percentComplete) + start * (1.5F*percentCompleteCubed + -2.5F*percentCompleteSquared + 1.0F) + end * (-1.5F*percentCompleteCubed + 2.0F*percentCompleteSquared + 0.5F*percentComplete) + next * (0.5F*percentCompleteCubed - 0.5F*percentCompleteSquared); } [System.Obsolete("Use CatmullRom")] public static Vector3 CatmullRomOLD (Vector3 previous, Vector3 start, Vector3 end, Vector3 next, float elapsedTime) { return CatmullRom(previous, start, end, next, elapsedTime); } /** Returns a point on a cubic bezier curve. \a t is clamped between 0 and 1 */ public static Vector3 CubicBezier (Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3, float t) { t = Mathf.Clamp01(t); float t2 = 1-t; return t2*t2*t2 * p0 + 3 * t2*t2 * t * p1 + 3 * t2 * t*t * p2 + t*t*t * p3; } /** Returns the derivative for a point on a cubic bezier curve. \a t is clamped between 0 and 1 */ public static Vector3 CubicBezierDerivative (Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3, float t) { t = Mathf.Clamp01(t); float t2 = 1-t; return 3*t2*t2*(p1-p0) + 6*t2*t*(p2 - p1) + 3*t*t*(p3 - p2); } /** Returns the second derivative for a point on a cubic bezier curve. \a t is clamped between 0 and 1 */ public static Vector3 CubicBezierSecondDerivative (Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3, float t) { t = Mathf.Clamp01(t); float t2 = 1-t; return 6*t2*(p2 - 2*p1 + p0) + 6*t*(p3 - 2*p2 + p1); } } /** Various vector math utility functions. * \version A lot of functions in the Polygon class have been moved to this class * the names have changed slightly and everything now consistently assumes a left handed * coordinate system now instead of sometimes using a left handed one and sometimes * using a right handed one. This is why the 'Left' methods in the Polygon class redirect * to methods named 'Right'. The functionality is exactly the same. * * Note the difference between segments and lines. Lines are infinitely * long but segments have only a finite length. * * \ingroup utils */ public static class VectorMath { /** Complex number multiplication. * \returns a * b * * Used to rotate vectors in an efficient way. * * \see https://en.wikipedia.org/wiki/Complex_number#Multiplication_and_division */ public static Vector2 ComplexMultiply (Vector2 a, Vector2 b) { return new Vector2(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x); } /** Complex number multiplication. * \returns a * conjugate(b) * * Used to rotate vectors in an efficient way. * * \see https://en.wikipedia.org/wiki/Complex_number#Multiplication_and_division * \see https://en.wikipedia.org/wiki/Complex_conjugate */ public static Vector2 ComplexMultiplyConjugate (Vector2 a, Vector2 b) { return new Vector2(a.x * b.x + a.y * b.y, a.y * b.x - a.x * b.y); } /** Returns the closest point on the line. * The line is treated as infinite. * \see ClosestPointOnSegment * \see ClosestPointOnLineFactor */ public static Vector3 ClosestPointOnLine (Vector3 lineStart, Vector3 lineEnd, Vector3 point) { Vector3 lineDirection = Vector3.Normalize(lineEnd - lineStart); float dot = Vector3.Dot(point - lineStart, lineDirection); return lineStart + (dot*lineDirection); } /** Factor along the line which is closest to the point. * Returned value is in the range [0,1] if the point lies on the segment otherwise it just lies on the line. * The closest point can be calculated using (end-start)*factor + start. * * \see ClosestPointOnLine * \see ClosestPointOnSegment */ public static float ClosestPointOnLineFactor (Vector3 lineStart, Vector3 lineEnd, Vector3 point) { var dir = lineEnd - lineStart; float sqrMagn = dir.sqrMagnitude; if (sqrMagn <= 0.000001) return 0; return Vector3.Dot(point - lineStart, dir) / sqrMagn; } /** Factor along the line which is closest to the point. * Returned value is in the range [0,1] if the point lies on the segment otherwise it just lies on the line. * The closest point can be calculated using (end-start)*factor + start */ public static float ClosestPointOnLineFactor (Int3 lineStart, Int3 lineEnd, Int3 point) { var lineDirection = lineEnd - lineStart; float magn = lineDirection.sqrMagnitude; float closestPoint = Int3.Dot((point - lineStart), lineDirection); if (magn != 0) closestPoint /= magn; return closestPoint; } /** Factor of the nearest point on the segment. * Returned value is in the range [0,1] if the point lies on the segment otherwise it just lies on the line. * The closest point can be calculated using (end-start)*factor + start; */ public static float ClosestPointOnLineFactor (Int2 lineStart, Int2 lineEnd, Int2 point) { var lineDirection = lineEnd - lineStart; double magn = lineDirection.sqrMagnitudeLong; double closestPoint = Int2.DotLong(point - lineStart, lineDirection); if (magn != 0) closestPoint /= magn; return (float)closestPoint; } /** Returns the closest point on the segment. * The segment is NOT treated as infinite. * \see ClosestPointOnLine * \see ClosestPointOnSegmentXZ */ public static Vector3 ClosestPointOnSegment (Vector3 lineStart, Vector3 lineEnd, Vector3 point) { var dir = lineEnd - lineStart; float sqrMagn = dir.sqrMagnitude; if (sqrMagn <= 0.000001) return lineStart; float factor = Vector3.Dot(point - lineStart, dir) / sqrMagn; return lineStart + Mathf.Clamp01(factor)*dir; } /** Returns the closest point on the segment in the XZ plane. * The y coordinate of the result will be the same as the y coordinate of the \a point parameter. * * The segment is NOT treated as infinite. * \see ClosestPointOnSegment * \see ClosestPointOnLine */ public static Vector3 ClosestPointOnSegmentXZ (Vector3 lineStart, Vector3 lineEnd, Vector3 point) { lineStart.y = point.y; lineEnd.y = point.y; Vector3 fullDirection = lineEnd-lineStart; Vector3 fullDirection2 = fullDirection; fullDirection2.y = 0; float magn = fullDirection2.magnitude; Vector3 lineDirection = magn > float.Epsilon ? fullDirection2/magn : Vector3.zero; float closestPoint = Vector3.Dot((point-lineStart), lineDirection); return lineStart+(Mathf.Clamp(closestPoint, 0.0f, fullDirection2.magnitude)*lineDirection); } /** Returns the approximate shortest squared distance between x,z and the segment p-q. * The segment is not considered infinite. * This function is not entirely exact, but it is about twice as fast as DistancePointSegment2. * \todo Is this actually approximate? It looks exact. */ public static float SqrDistancePointSegmentApproximate (int x, int z, int px, int pz, int qx, int qz) { float pqx = (float)(qx - px); float pqz = (float)(qz - pz); float dx = (float)(x - px); float dz = (float)(z - pz); float d = pqx*pqx + pqz*pqz; float t = pqx*dx + pqz*dz; if (d > 0) t /= d; if (t < 0) t = 0; else if (t > 1) t = 1; dx = px + t*pqx - x; dz = pz + t*pqz - z; return dx*dx + dz*dz; } /** Returns the approximate shortest squared distance between x,z and the segment p-q. * The segment is not considered infinite. * This function is not entirely exact, but it is about twice as fast as DistancePointSegment2. * \todo Is this actually approximate? It looks exact. */ public static float SqrDistancePointSegmentApproximate (Int3 a, Int3 b, Int3 p) { float pqx = (float)(b.x - a.x); float pqz = (float)(b.z - a.z); float dx = (float)(p.x - a.x); float dz = (float)(p.z - a.z); float d = pqx*pqx + pqz*pqz; float t = pqx*dx + pqz*dz; if (d > 0) t /= d; if (t < 0) t = 0; else if (t > 1) t = 1; dx = a.x + t*pqx - p.x; dz = a.z + t*pqz - p.z; return dx*dx + dz*dz; } /** Returns the squared distance between p and the segment a-b. * The line is not considered infinite. */ public static float SqrDistancePointSegment (Vector3 a, Vector3 b, Vector3 p) { var nearest = ClosestPointOnSegment(a, b, p); return (nearest-p).sqrMagnitude; } /** 3D minimum distance between 2 segments. * Input: two 3D line segments S1 and S2 * \returns the shortest squared distance between S1 and S2 */ public static float SqrDistanceSegmentSegment (Vector3 s1, Vector3 e1, Vector3 s2, Vector3 e2) { Vector3 u = e1 - s1; Vector3 v = e2 - s2; Vector3 w = s1 - s2; float a = Vector3.Dot(u, u); // always >= 0 float b = Vector3.Dot(u, v); float c = Vector3.Dot(v, v); // always >= 0 float d = Vector3.Dot(u, w); float e = Vector3.Dot(v, w); float D = a*c - b*b; // always >= 0 float sc, sN, sD = D; // sc = sN / sD, default sD = D >= 0 float tc, tN, tD = D; // tc = tN / tD, default tD = D >= 0 // compute the line parameters of the two closest points if (D < 0.000001f) { // the lines are almost parallel sN = 0.0f; // force using point P0 on segment S1 sD = 1.0f; // to prevent possible division by 0.0 later tN = e; tD = c; } else { // get the closest points on the infinite lines sN = (b*e - c*d); tN = (a*e - b*d); if (sN < 0.0f) { // sc < 0 => the s=0 edge is visible sN = 0.0f; tN = e; tD = c; } else if (sN > sD) { // sc > 1 => the s=1 edge is visible sN = sD; tN = e + b; tD = c; } } if (tN < 0.0f) { // tc < 0 => the t=0 edge is visible tN = 0.0f; // recompute sc for this edge if (-d < 0.0f) sN = 0.0f; else if (-d > a) sN = sD; else { sN = -d; sD = a; } } else if (tN > tD) { // tc > 1 => the t=1 edge is visible tN = tD; // recompute sc for this edge if ((-d + b) < 0.0f) sN = 0; else if ((-d + b) > a) sN = sD; else { sN = (-d + b); sD = a; } } // finally do the division to get sc and tc sc = (Math.Abs(sN) < 0.000001f ? 0.0f : sN / sD); tc = (Math.Abs(tN) < 0.000001f ? 0.0f : tN / tD); // get the difference of the two closest points Vector3 dP = w + (sc * u) - (tc * v); // = S1(sc) - S2(tc) return dP.sqrMagnitude; // return the closest distance } /** Squared distance between two points in the XZ plane */ public static float SqrDistanceXZ (Vector3 a, Vector3 b) { var delta = a-b; return delta.x*delta.x+delta.z*delta.z; } /** Signed area of a triangle in the XZ plane multiplied by 2. * This will be negative for clockwise triangles and positive for counter-clockwise ones */ public static long SignedTriangleAreaTimes2XZ (Int3 a, Int3 b, Int3 c) { return (long)(b.x - a.x) * (long)(c.z - a.z) - (long)(c.x - a.x) * (long)(b.z - a.z); } /** Signed area of a triangle in the XZ plane multiplied by 2. * This will be negative for clockwise triangles and positive for counter-clockwise ones. */ public static float SignedTriangleAreaTimes2XZ (Vector3 a, Vector3 b, Vector3 c) { return (b.x - a.x) * (c.z - a.z) - (c.x - a.x) * (b.z - a.z); } /** Returns if \a p lies on the right side of the line \a a - \a b. * Uses XZ space. Does not return true if the points are colinear. */ public static bool RightXZ (Vector3 a, Vector3 b, Vector3 p) { return (b.x - a.x) * (p.z - a.z) - (p.x - a.x) * (b.z - a.z) < -float.Epsilon; } /** Returns if \a p lies on the right side of the line \a a - \a b. * Uses XZ space. Does not return true if the points are colinear. */ public static bool RightXZ (Int3 a, Int3 b, Int3 p) { return (long)(b.x - a.x) * (long)(p.z - a.z) - (long)(p.x - a.x) * (long)(b.z - a.z) < 0; } /** Returns which side of the line \a a - \a b that \a p lies on. * Uses XZ space. */ public static Side SideXZ (Int3 a, Int3 b, Int3 p) { var s = (long)(b.x - a.x) * (long)(p.z - a.z) - (long)(p.x - a.x) * (long)(b.z - a.z); return s > 0 ? Side.Left : (s < 0 ? Side.Right : Side.Colinear); } /** Returns if \a p lies on the right side of the line \a a - \a b. * Also returns true if the points are colinear. */ public static bool RightOrColinear (Vector2 a, Vector2 b, Vector2 p) { return (b.x - a.x) * (p.y - a.y) - (p.x - a.x) * (b.y - a.y) <= 0; } /** Returns if \a p lies on the right side of the line \a a - \a b. * Also returns true if the points are colinear. */ public static bool RightOrColinear (Int2 a, Int2 b, Int2 p) { return (long)(b.x - a.x) * (long)(p.y - a.y) - (long)(p.x - a.x) * (long)(b.y - a.y) <= 0; } /** Returns if \a p lies on the left side of the line \a a - \a b. * Uses XZ space. Also returns true if the points are colinear. */ public static bool RightOrColinearXZ (Vector3 a, Vector3 b, Vector3 p) { return (b.x - a.x) * (p.z - a.z) - (p.x - a.x) * (b.z - a.z) <= 0; } /** Returns if \a p lies on the left side of the line \a a - \a b. * Uses XZ space. Also returns true if the points are colinear. */ public static bool RightOrColinearXZ (Int3 a, Int3 b, Int3 p) { return (long)(b.x - a.x) * (long)(p.z - a.z) - (long)(p.x - a.x) * (long)(b.z - a.z) <= 0; } /** Returns if the points a in a clockwise order. * Will return true even if the points are colinear or very slightly counter-clockwise * (if the signed area of the triangle formed by the points has an area less than or equals to float.Epsilon) */ public static bool IsClockwiseMarginXZ (Vector3 a, Vector3 b, Vector3 c) { return (b.x-a.x)*(c.z-a.z)-(c.x-a.x)*(b.z-a.z) <= float.Epsilon; } /** Returns if the points a in a clockwise order */ public static bool IsClockwiseXZ (Vector3 a, Vector3 b, Vector3 c) { return (b.x-a.x)*(c.z-a.z)-(c.x-a.x)*(b.z-a.z) < 0; } /** Returns if the points a in a clockwise order */ public static bool IsClockwiseXZ (Int3 a, Int3 b, Int3 c) { return RightXZ(a, b, c); } /** Returns true if the points a in a clockwise order or if they are colinear */ public static bool IsClockwiseOrColinearXZ (Int3 a, Int3 b, Int3 c) { return RightOrColinearXZ(a, b, c); } /** Returns true if the points a in a clockwise order or if they are colinear */ public static bool IsClockwiseOrColinear (Int2 a, Int2 b, Int2 c) { return RightOrColinear(a, b, c); } /** Returns if the points are colinear (lie on a straight line) */ public static bool IsColinear (Vector3 a, Vector3 b, Vector3 c) { var lhs = b - a; var rhs = c - a; // Take the cross product of lhs and rhs // The magnitude of the cross product will be zero if the points a,b,c are colinear float x = lhs.y * rhs.z - lhs.z * rhs.y; float y = lhs.z * rhs.x - lhs.x * rhs.z; float z = lhs.x * rhs.y - lhs.y * rhs.x; float v = x*x + y*y + z*z; // Epsilon not chosen with much thought, just that float.Epsilon was a bit too small. return v <= 0.0000001f; } /** Returns if the points are colinear (lie on a straight line) */ public static bool IsColinear (Vector2 a, Vector2 b, Vector2 c) { float v = (b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y); // Epsilon not chosen with much thought, just that float.Epsilon was a bit too small. return v <= 0.0000001f && v >= -0.0000001f; } /** Returns if the points are colinear (lie on a straight line) */ public static bool IsColinearXZ (Int3 a, Int3 b, Int3 c) { return (long)(b.x - a.x) * (long)(c.z - a.z) - (long)(c.x - a.x) * (long)(b.z - a.z) == 0; } /** Returns if the points are colinear (lie on a straight line) */ public static bool IsColinearXZ (Vector3 a, Vector3 b, Vector3 c) { float v = (b.x-a.x)*(c.z-a.z)-(c.x-a.x)*(b.z-a.z); // Epsilon not chosen with much thought, just that float.Epsilon was a bit too small. return v <= 0.0000001f && v >= -0.0000001f; } /** Returns if the points are colinear (lie on a straight line) */ public static bool IsColinearAlmostXZ (Int3 a, Int3 b, Int3 c) { long v = (long)(b.x - a.x) * (long)(c.z - a.z) - (long)(c.x - a.x) * (long)(b.z - a.z); return v > -1 && v < 1; } /** Returns if the line segment \a start2 - \a end2 intersects the line segment \a start1 - \a end1. * If only the endpoints coincide, the result is undefined (may be true or false). */ public static bool SegmentsIntersect (Int2 start1, Int2 end1, Int2 start2, Int2 end2) { return RightOrColinear(start1, end1, start2) != RightOrColinear(start1, end1, end2) && RightOrColinear(start2, end2, start1) != RightOrColinear(start2, end2, end1); } /** Returns if the line segment \a start2 - \a end2 intersects the line segment \a start1 - \a end1. * If only the endpoints coincide, the result is undefined (may be true or false). * * \note XZ space */ public static bool SegmentsIntersectXZ (Int3 start1, Int3 end1, Int3 start2, Int3 end2) { return RightOrColinearXZ(start1, end1, start2) != RightOrColinearXZ(start1, end1, end2) && RightOrColinearXZ(start2, end2, start1) != RightOrColinearXZ(start2, end2, end1); } /** Returns if the two line segments intersects. The lines are NOT treated as infinite (just for clarification) * \see IntersectionPoint */ public static bool SegmentsIntersectXZ (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2) { Vector3 dir1 = end1-start1; Vector3 dir2 = end2-start2; float den = dir2.z*dir1.x - dir2.x * dir1.z; if (den == 0) { return false; } float nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x); float nom2 = dir1.x*(start1.z-start2.z) - dir1.z * (start1.x - start2.x); float u = nom/den; float u2 = nom2/den; if (u < 0F || u > 1F || u2 < 0F || u2 > 1F) { return false; } return true; } /** Intersection point between two infinite lines. * Note that start points and directions are taken as parameters instead of start and end points. * Lines are treated as infinite. If the lines are parallel 'start1' will be returned. * Intersections are calculated on the XZ plane. * * \see LineIntersectionPointXZ */ public static Vector3 LineDirIntersectionPointXZ (Vector3 start1, Vector3 dir1, Vector3 start2, Vector3 dir2) { float den = dir2.z*dir1.x - dir2.x * dir1.z; if (den == 0) { return start1; } float nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x); float u = nom/den; return start1 + dir1*u; } /** Intersection point between two infinite lines. * Note that start points and directions are taken as parameters instead of start and end points. * Lines are treated as infinite. If the lines are parallel 'start1' will be returned. * Intersections are calculated on the XZ plane. * * \see LineIntersectionPointXZ */ public static Vector3 LineDirIntersectionPointXZ (Vector3 start1, Vector3 dir1, Vector3 start2, Vector3 dir2, out bool intersects) { float den = dir2.z*dir1.x - dir2.x * dir1.z; if (den == 0) { intersects = false; return start1; } float nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x); float u = nom/den; intersects = true; return start1 + dir1*u; } /** Returns if the ray (start1, end1) intersects the segment (start2, end2). * false is returned if the lines are parallel. * Only the XZ coordinates are used. * \todo Double check that this actually works */ public static bool RaySegmentIntersectXZ (Int3 start1, Int3 end1, Int3 start2, Int3 end2) { Int3 dir1 = end1-start1; Int3 dir2 = end2-start2; long den = dir2.z*dir1.x - dir2.x * dir1.z; if (den == 0) { return false; } long nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x); long nom2 = dir1.x*(start1.z-start2.z) - dir1.z * (start1.x - start2.x); //factor1 < 0 // If both have the same sign, then nom/den < 0 and thus the segment cuts the ray before the ray starts if (!(nom < 0 ^ den < 0)) { return false; } //factor2 < 0 if (!(nom2 < 0 ^ den < 0)) { return false; } if ((den >= 0 && nom2 > den) || (den < 0 && nom2 <= den)) { return false; } return true; } /** Returns the intersection factors for line 1 and line 2. The intersection factors is a distance along the line \a start - \a end where the other line intersects it.\n * \code intersectionPoint = start1 + factor1 * (end1-start1) \endcode * \code intersectionPoint2 = start2 + factor2 * (end2-start2) \endcode * Lines are treated as infinite.\n * false is returned if the lines are parallel and true if they are not. * Only the XZ coordinates are used. */ public static bool LineIntersectionFactorXZ (Int3 start1, Int3 end1, Int3 start2, Int3 end2, out float factor1, out float factor2) { Int3 dir1 = end1-start1; Int3 dir2 = end2-start2; long den = dir2.z*dir1.x - dir2.x * dir1.z; if (den == 0) { factor1 = 0; factor2 = 0; return false; } long nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x); long nom2 = dir1.x*(start1.z-start2.z) - dir1.z * (start1.x - start2.x); factor1 = (float)nom/den; factor2 = (float)nom2/den; return true; } /** Returns the intersection factors for line 1 and line 2. The intersection factors is a distance along the line \a start - \a end where the other line intersects it.\n * \code intersectionPoint = start1 + factor1 * (end1-start1) \endcode * \code intersectionPoint2 = start2 + factor2 * (end2-start2) \endcode * Lines are treated as infinite.\n * false is returned if the lines are parallel and true if they are not. * Only the XZ coordinates are used. */ public static bool LineIntersectionFactorXZ (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2, out float factor1, out float factor2) { Vector3 dir1 = end1-start1; Vector3 dir2 = end2-start2; float den = dir2.z*dir1.x - dir2.x * dir1.z; if (den <= 0.00001f && den >= -0.00001f) { factor1 = 0; factor2 = 0; return false; } float nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x); float nom2 = dir1.x*(start1.z-start2.z) - dir1.z * (start1.x - start2.x); float u = nom/den; float u2 = nom2/den; factor1 = u; factor2 = u2; return true; } /** Returns the intersection factor for line 1 with ray 2. * The intersection factors is a factor distance along the line \a start - \a end where the other line intersects it.\n * \code intersectionPoint = start1 + factor * (end1-start1) \endcode * Lines are treated as infinite.\n * * The second "line" is treated as a ray, meaning only matches on start2 or forwards towards end2 (and beyond) will be returned * If the point lies on the wrong side of the ray start, Nan will be returned. * * NaN is returned if the lines are parallel. */ public static float LineRayIntersectionFactorXZ (Int3 start1, Int3 end1, Int3 start2, Int3 end2) { Int3 dir1 = end1-start1; Int3 dir2 = end2-start2; int den = dir2.z*dir1.x - dir2.x * dir1.z; if (den == 0) { return float.NaN; } int nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x); int nom2 = dir1.x*(start1.z-start2.z) - dir1.z * (start1.x - start2.x); if ((float)nom2/den < 0) { return float.NaN; } return (float)nom/den; } /** Returns the intersection factor for line 1 with line 2. * The intersection factor is a distance along the line \a start1 - \a end1 where the line \a start2 - \a end2 intersects it.\n * \code intersectionPoint = start1 + intersectionFactor * (end1-start1) \endcode. * Lines are treated as infinite.\n * -1 is returned if the lines are parallel (note that this is a valid return value if they are not parallel too) */ public static float LineIntersectionFactorXZ (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2) { Vector3 dir1 = end1-start1; Vector3 dir2 = end2-start2; float den = dir2.z*dir1.x - dir2.x * dir1.z; if (den == 0) { return -1; } float nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x); float u = nom/den; return u; } /** Returns the intersection point between the two lines. Lines are treated as infinite. \a start1 is returned if the lines are parallel */ public static Vector3 LineIntersectionPointXZ (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2) { bool s; return LineIntersectionPointXZ(start1, end1, start2, end2, out s); } /** Returns the intersection point between the two lines. Lines are treated as infinite. \a start1 is returned if the lines are parallel */ public static Vector3 LineIntersectionPointXZ (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2, out bool intersects) { Vector3 dir1 = end1-start1; Vector3 dir2 = end2-start2; float den = dir2.z*dir1.x - dir2.x * dir1.z; if (den == 0) { intersects = false; return start1; } float nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x); float u = nom/den; intersects = true; return start1 + dir1*u; } /** Returns the intersection point between the two lines. Lines are treated as infinite. \a start1 is returned if the lines are parallel */ public static Vector2 LineIntersectionPoint (Vector2 start1, Vector2 end1, Vector2 start2, Vector2 end2) { bool s; return LineIntersectionPoint(start1, end1, start2, end2, out s); } /** Returns the intersection point between the two lines. Lines are treated as infinite. \a start1 is returned if the lines are parallel */ public static Vector2 LineIntersectionPoint (Vector2 start1, Vector2 end1, Vector2 start2, Vector2 end2, out bool intersects) { Vector2 dir1 = end1-start1; Vector2 dir2 = end2-start2; float den = dir2.y*dir1.x - dir2.x * dir1.y; if (den == 0) { intersects = false; return start1; } float nom = dir2.x*(start1.y-start2.y)- dir2.y*(start1.x-start2.x); float u = nom/den; intersects = true; return start1 + dir1*u; } /** Returns the intersection point between the two line segments in XZ space. * Lines are NOT treated as infinite. \a start1 is returned if the line segments do not intersect * The point will be returned along the line [start1, end1] (this matters only for the y coordinate). */ public static Vector3 SegmentIntersectionPointXZ (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2, out bool intersects) { Vector3 dir1 = end1-start1; Vector3 dir2 = end2-start2; float den = dir2.z * dir1.x - dir2.x * dir1.z; if (den == 0) { intersects = false; return start1; } float nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x); float nom2 = dir1.x*(start1.z-start2.z) - dir1.z*(start1.x-start2.x); float u = nom/den; float u2 = nom2/den; if (u < 0F || u > 1F || u2 < 0F || u2 > 1F) { intersects = false; return start1; } intersects = true; return start1 + dir1*u; } /** Intersection of a line and a circle. * Returns the greatest t such that segmentStart+t*(segmentEnd-segmentStart) lies on the circle. * * In case the line does not intersect with the circle, the closest point on the line * to the circle will be returned. * * \note Works for line and sphere in 3D space as well. * * \see http://mathworld.wolfram.com/Circle-LineIntersection.html * \see https://en.wikipedia.org/wiki/Intersection_(Euclidean_geometry)#A_line_and_a_circle */ public static float LineCircleIntersectionFactor (Vector3 circleCenter, Vector3 linePoint1, Vector3 linePoint2, float radius) { float segmentLength; var normalizedDirection = Normalize(linePoint2 - linePoint1, out segmentLength); var dirToStart = linePoint1 - circleCenter; var dot = Vector3.Dot(dirToStart, normalizedDirection); var discriminant = dot * dot - (dirToStart.sqrMagnitude - radius*radius); if (discriminant < 0) { // No intersection, pick closest point on segment discriminant = 0; } var t = -dot + Mathf.Sqrt(discriminant); // Note: the default value of 1 is important for the PathInterpolator.MoveToCircleIntersection2D // method to work properly. Maybe find some better abstraction where this default value is more obvious. return segmentLength > 0.00001f ? t / segmentLength : 1f; } /** Normalize vector and also return the magnitude. * This is more efficient than calculating the magnitude and normalizing separately */ public static Vector3 Normalize (Vector3 v, out float magnitude) { magnitude = v.magnitude; // This is the same constant that Unity uses if (magnitude > 1E-05f) { return v / magnitude; } else { return Vector3.zero; } } /** Normalize vector and also return the magnitude. * This is more efficient than calculating the magnitude and normalizing separately */ public static Vector2 Normalize (Vector2 v, out float magnitude) { magnitude = v.magnitude; // This is the same constant that Unity uses if (magnitude > 1E-05f) { return v / magnitude; } else { return Vector2.zero; } } /* Clamp magnitude along the X and Z axes. * The y component will not be changed. */ public static Vector3 ClampMagnitudeXZ (Vector3 v, float maxMagnitude) { float squaredMagnitudeXZ = v.x*v.x + v.z*v.z; if (squaredMagnitudeXZ > maxMagnitude*maxMagnitude && maxMagnitude > 0) { var factor = maxMagnitude / Mathf.Sqrt(squaredMagnitudeXZ); v.x *= factor; v.z *= factor; } return v; } /* Magnitude in the XZ plane */ public static float MagnitudeXZ (Vector3 v) { return Mathf.Sqrt(v.x*v.x + v.z*v.z); } } /** Utility functions for working with numbers and strings. * \ingroup utils * \see Polygon * \see VectorMath */ public static class AstarMath { /** Returns the closest point on the line. The line is treated as infinite. * \see NearestPointStrict */ [System.Obsolete("Use VectorMath.ClosestPointOnLine instead")] public static Vector3 NearestPoint (Vector3 lineStart, Vector3 lineEnd, Vector3 point) { return VectorMath.ClosestPointOnLine(lineStart, lineEnd, point); } [System.Obsolete("Use VectorMath.ClosestPointOnLineFactor instead")] public static float NearestPointFactor (Vector3 lineStart, Vector3 lineEnd, Vector3 point) { return VectorMath.ClosestPointOnLineFactor(lineStart, lineEnd, point); } /** Factor of the nearest point on the segment. * Returned value is in the range [0,1] if the point lies on the segment otherwise it just lies on the line. * The closest point can be got by (end-start)*factor + start; */ [System.Obsolete("Use VectorMath.ClosestPointOnLineFactor instead")] public static float NearestPointFactor (Int3 lineStart, Int3 lineEnd, Int3 point) { return VectorMath.ClosestPointOnLineFactor(lineStart, lineEnd, point); } /** Factor of the nearest point on the segment. * Returned value is in the range [0,1] if the point lies on the segment otherwise it just lies on the line. * The closest point can be got by (end-start)*factor + start; */ [System.Obsolete("Use VectorMath.ClosestPointOnLineFactor instead")] public static float NearestPointFactor (Int2 lineStart, Int2 lineEnd, Int2 point) { return VectorMath.ClosestPointOnLineFactor(lineStart, lineEnd, point); } /** Returns the closest point on the line segment. The line is NOT treated as infinite. * \see NearestPoint */ [System.Obsolete("Use VectorMath.ClosestPointOnSegment instead")] public static Vector3 NearestPointStrict (Vector3 lineStart, Vector3 lineEnd, Vector3 point) { return VectorMath.ClosestPointOnSegment(lineStart, lineEnd, point); } /** Returns the closest point on the line segment on the XZ plane. The line is NOT treated as infinite. * \see NearestPoint */ [System.Obsolete("Use VectorMath.ClosestPointOnSegmentXZ instead")] public static Vector3 NearestPointStrictXZ (Vector3 lineStart, Vector3 lineEnd, Vector3 point) { return VectorMath.ClosestPointOnSegmentXZ(lineStart, lineEnd, point); } /** Returns the approximate shortest squared distance between x,z and the line p-q. * The line is considered infinite. * This function is not entirely exact, but it is about twice as fast as DistancePointSegment2. */ [System.Obsolete("Use VectorMath.SqrDistancePointSegmentApproximate instead")] public static float DistancePointSegment (int x, int z, int px, int pz, int qx, int qz) { return VectorMath.SqrDistancePointSegmentApproximate(x, z, px, pz, qx, qz); } /** Returns the approximate shortest squared distance between x,z and the line p-q. * The line is considered infinite. * This function is not entirely exact, but it is about twice as fast as DistancePointSegment2. */ [System.Obsolete("Use VectorMath.SqrDistancePointSegmentApproximate instead")] public static float DistancePointSegment (Int3 a, Int3 b, Int3 p) { return VectorMath.SqrDistancePointSegmentApproximate(a, b, p); } /** Returns the squared distance between c and the line a-b. The line is not considered infinite. */ [System.Obsolete("Use VectorMath.SqrDistancePointSegment instead")] public static float DistancePointSegmentStrict (Vector3 a, Vector3 b, Vector3 p) { return VectorMath.SqrDistancePointSegment(a, b, p); } /** Returns a point on a cubic bezier curve. \a t is clamped between 0 and 1 */ [System.Obsolete("Use AstarSplines.CubicBezier instead")] public static Vector3 CubicBezier (Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3, float t) { return AstarSplines.CubicBezier(p0, p1, p2, p3, t); } /** Maps a value between startMin and startMax to be between 0 and 1 */ [System.Obsolete("Use Mathf.InverseLerp instead")] public static float MapTo (float startMin, float startMax, float value) { return Mathf.InverseLerp(startMin, startMax, value); } /** Maps a value between startMin and startMax to be between targetMin and targetMax */ public static float MapTo (float startMin, float startMax, float targetMin, float targetMax, float value) { return Mathf.Lerp(targetMin, targetMax, Mathf.InverseLerp(startMin, startMax, value)); } /** Returns a nicely formatted string for the number of bytes (KiB, MiB, GiB etc). Uses decimal names (KB, Mb - 1000) but calculates using binary values (KiB, MiB - 1024) */ public static string FormatBytesBinary (int bytes) { double sign = bytes >= 0 ? 1D : -1D; bytes = Mathf.Abs(bytes); if (bytes < 1024) { return (bytes*sign)+" bytes"; } else if (bytes < 1024*1024) { return ((bytes/1024D)*sign).ToString("0.0") + " KiB"; } else if (bytes < 1024*1024*1024) { return ((bytes/(1024D*1024D))*sign).ToString("0.0") +" MiB"; } return ((bytes/(1024D*1024D*1024D))*sign).ToString("0.0") +" GiB"; } } /** Utility functions for working with polygons, lines, and other vector math. * All functions which accepts Vector3s but work in 2D space uses the XZ space if nothing else is said. * * \version A lot of functions in this class have been moved to the VectorMath class * the names have changed slightly and everything now consistently assumes a left handed * coordinate system now instead of sometimes using a left handed one and sometimes * using a right handed one. This is why the 'Left' methods redirect to methods * named 'Right'. The functionality is exactly the same. * * \ingroup utils */ public static class Polygon { /** Returns if the triangle \a ABC contains the point \a p in XZ space. * The triangle vertices are assumed to be laid out in clockwise order. */ public static bool ContainsPointXZ (Vector3 a, Vector3 b, Vector3 c, Vector3 p) { return VectorMath.IsClockwiseMarginXZ(a, b, p) && VectorMath.IsClockwiseMarginXZ(b, c, p) && VectorMath.IsClockwiseMarginXZ(c, a, p); } /** Returns if the triangle \a ABC contains the point \a p. * The triangle vertices are assumed to be laid out in clockwise order. */ public static bool ContainsPointXZ (Int3 a, Int3 b, Int3 c, Int3 p) { return VectorMath.IsClockwiseOrColinearXZ(a, b, p) && VectorMath.IsClockwiseOrColinearXZ(b, c, p) && VectorMath.IsClockwiseOrColinearXZ(c, a, p); } /** Returns if the triangle \a ABC contains the point \a p. * The triangle vertices are assumed to be laid out in clockwise order. */ public static bool ContainsPoint (Int2 a, Int2 b, Int2 c, Int2 p) { return VectorMath.IsClockwiseOrColinear(a, b, p) && VectorMath.IsClockwiseOrColinear(b, c, p) && VectorMath.IsClockwiseOrColinear(c, a, p); } /** Checks if \a p is inside the polygon. * \author http://unifycommunity.com/wiki/index.php?title=PolyContainsPoint (Eric5h5) */ public static bool ContainsPoint (Vector2[] polyPoints, Vector2 p) { int j = polyPoints.Length-1; bool inside = false; for (int i = 0; i < polyPoints.Length; j = i++) { if (((polyPoints[i].y <= p.y && p.y < polyPoints[j].y) || (polyPoints[j].y <= p.y && p.y < polyPoints[i].y)) && (p.x < (polyPoints[j].x - polyPoints[i].x) * (p.y - polyPoints[i].y) / (polyPoints[j].y - polyPoints[i].y) + polyPoints[i].x)) inside = !inside; } return inside; } /** Checks if \a p is inside the polygon (XZ space). * \author http://unifycommunity.com/wiki/index.php?title=PolyContainsPoint (Eric5h5) */ public static bool ContainsPointXZ (Vector3[] polyPoints, Vector3 p) { int j = polyPoints.Length-1; bool inside = false; for (int i = 0; i < polyPoints.Length; j = i++) { if (((polyPoints[i].z <= p.z && p.z < polyPoints[j].z) || (polyPoints[j].z <= p.z && p.z < polyPoints[i].z)) && (p.x < (polyPoints[j].x - polyPoints[i].x) * (p.z - polyPoints[i].z) / (polyPoints[j].z - polyPoints[i].z) + polyPoints[i].x)) inside = !inside; } return inside; } /** Sample Y coordinate of the triangle (p1, p2, p3) at the point p in XZ space. * The y coordinate of \a p is ignored. * * \returns The interpolated y coordinate unless the triangle is degenerate in which case a DivisionByZeroException will be thrown * * \see https://en.wikipedia.org/wiki/Barycentric_coordinate_system */ public static int SampleYCoordinateInTriangle (Int3 p1, Int3 p2, Int3 p3, Int3 p) { double det = ((double)(p2.z - p3.z)) * (p1.x - p3.x) + ((double)(p3.x - p2.x)) * (p1.z - p3.z); double lambda1 = ((((double)(p2.z - p3.z)) * (p.x - p3.x) + ((double)(p3.x - p2.x)) * (p.z - p3.z)) / det); double lambda2 = ((((double)(p3.z - p1.z)) * (p.x - p3.x) + ((double)(p1.x - p3.x)) * (p.z - p3.z)) / det); return (int)Math.Round(lambda1 * p1.y + lambda2 * p2.y + (1 - lambda1 - lambda2) * p3.y); } /** Returns if \a p lies on the left side of the line \a a - \a b. Uses XZ space. * Does not return true if the points are colinear. * \deprecated Use VectorMath.RightXZ instead. Note that it now uses a left handed coordinate system (same as Unity) */ [System.Obsolete("Use VectorMath.RightXZ instead. Note that it now uses a left handed coordinate system (same as Unity)")] public static bool LeftNotColinear (Vector3 a, Vector3 b, Vector3 p) { return VectorMath.RightXZ(a, b, p); } /** Returns if \a p lies on the left side of the line \a a - \a b. Uses XZ space. Also returns true if the points are colinear * \deprecated Use VectorMath.RightOrColinearXZ instead. Note that it now uses a left handed coordinate system (same as Unity) */ [System.Obsolete("Use VectorMath.RightOrColinearXZ instead. Note that it now uses a left handed coordinate system (same as Unity)")] public static bool Left (Vector3 a, Vector3 b, Vector3 p) { return VectorMath.RightOrColinearXZ(a, b, p); } /** Returns if \a p lies on the left side of the line \a a - \a b. Also returns true if the points are colinear * \deprecated Use VectorMath.RightOrColinear instead. Note that it now uses a left handed coordinate system (same as Unity) */ [System.Obsolete("Use VectorMath.RightOrColinear instead. Note that it now uses a left handed coordinate system (same as Unity)")] public static bool Left (Vector2 a, Vector2 b, Vector2 p) { return VectorMath.RightOrColinear(a, b, p); } /** Returns if \a p lies on the left side of the line \a a - \a b. Uses XZ space. Also returns true if the points are colinear * \deprecated Use VectorMath.RightOrColinearXZ instead. Note that it now uses a left handed coordinate system (same as Unity) */ [System.Obsolete("Use VectorMath.RightOrColinearXZ instead. Note that it now uses a left handed coordinate system (same as Unity)")] public static bool Left (Int3 a, Int3 b, Int3 p) { return VectorMath.RightOrColinearXZ(a, b, p); } /** Returns if \a p lies on the left side of the line \a a - \a b. Uses XZ space. * \deprecated Use VectorMath.RightXZ instead. Note that it now uses a left handed coordinate system (same as Unity) */ [System.Obsolete("Use VectorMath.RightXZ instead. Note that it now uses a left handed coordinate system (same as Unity)")] public static bool LeftNotColinear (Int3 a, Int3 b, Int3 p) { return VectorMath.RightXZ(a, b, p); } /** Returns if \a p lies on the left side of the line \a a - \a b. Also returns true if the points are colinear * \deprecated Use VectorMath.RightOrColinear instead. Note that it now uses a left handed coordinate system (same as Unity) */ [System.Obsolete("Use VectorMath.RightOrColinear instead. Note that it now uses a left handed coordinate system (same as Unity)")] public static bool Left (Int2 a, Int2 b, Int2 p) { return VectorMath.RightOrColinear(a, b, p); } /** Returns if the points a in a clockwise order. * Will return true even if the points are colinear or very slightly counter-clockwise * (if the signed area of the triangle formed by the points has an area less than or equals to float.Epsilon) * \deprecated Use VectorMath.IsClockwiseMarginXZ instead */ [System.Obsolete("Use VectorMath.IsClockwiseMarginXZ instead")] public static bool IsClockwiseMargin (Vector3 a, Vector3 b, Vector3 c) { return VectorMath.IsClockwiseMarginXZ(a, b, c); } /** Returns if the points a in a clockwise order * \deprecated Use VectorMath.IsClockwiseXZ instead */ [System.Obsolete("Use VectorMath.IsClockwiseXZ instead")] public static bool IsClockwise (Vector3 a, Vector3 b, Vector3 c) { return VectorMath.IsClockwiseXZ(a, b, c); } /** Returns if the points a in a clockwise order * \deprecated Use VectorMath.IsClockwiseXZ instead */ [System.Obsolete("Use VectorMath.IsClockwiseXZ instead")] public static bool IsClockwise (Int3 a, Int3 b, Int3 c) { return VectorMath.IsClockwiseXZ(a, b, c); } /** Returns true if the points a in a clockwise order or if they are colinear * \deprecated Use VectorMath.IsClockwiseOrColinearXZ instead */ [System.Obsolete("Use VectorMath.IsClockwiseOrColinearXZ instead")] public static bool IsClockwiseMargin (Int3 a, Int3 b, Int3 c) { return VectorMath.IsClockwiseOrColinearXZ(a, b, c); } /** Returns true if the points a in a clockwise order or if they are colinear * \deprecated Use VectorMath.IsClockwiseOrColinear instead */ [System.Obsolete("Use VectorMath.IsClockwiseOrColinear instead")] public static bool IsClockwiseMargin (Int2 a, Int2 b, Int2 c) { return VectorMath.IsClockwiseOrColinear(a, b, c); } /** Returns if the points are colinear (lie on a straight line) * \deprecated Use VectorMath.IsColinearXZ instead */ [System.Obsolete("Use VectorMath.IsColinearXZ instead")] public static bool IsColinear (Int3 a, Int3 b, Int3 c) { return VectorMath.IsColinearXZ(a, b, c); } /** Returns if the points are colinear (lie on a straight line) * \deprecated Use VectorMath.IsColinearAlmostXZ instead */ [System.Obsolete("Use VectorMath.IsColinearAlmostXZ instead")] public static bool IsColinearAlmost (Int3 a, Int3 b, Int3 c) { return VectorMath.IsColinearAlmostXZ(a, b, c); } /** Returns if the points are colinear (lie on a straight line) * \deprecated Use VectorMath.IsColinearXZ instead */ [System.Obsolete("Use VectorMath.IsColinearXZ instead")] public static bool IsColinear (Vector3 a, Vector3 b, Vector3 c) { return VectorMath.IsColinearXZ(a, b, c); } /** Returns if the line segment \a a2 - \a b2 intersects the infinite line \a a - \a b. a-b is infinite, a2-b2 is not infinite */ [System.Obsolete("Marked for removal since it is not used by any part of the A* Pathfinding Project")] public static bool IntersectsUnclamped (Vector3 a, Vector3 b, Vector3 a2, Vector3 b2) { return VectorMath.RightOrColinearXZ(a, b, a2) != VectorMath.RightOrColinearXZ(a, b, b2); } /** Returns if the line segment \a a2 - \a b2 intersects the line segment \a a - \a b. * If only the endpoints coincide, the result is undefined (may be true or false). * * \deprecated Use VectorMath.SegmentsIntersect instead */ [System.Obsolete("Use VectorMath.SegmentsIntersect instead")] public static bool Intersects (Int2 start1, Int2 end1, Int2 start2, Int2 end2) { return VectorMath.SegmentsIntersect(start1, end1, start2, end2); } /** Returns if the line segment \a a2 - \a b2 intersects the line segment \a a - \a b. * If only the endpoints coincide, the result is undefined (may be true or false). * * \note XZ space * * \deprecated Use VectorMath.SegmentsIntersectXZ instead */ [System.Obsolete("Use VectorMath.SegmentsIntersectXZ instead")] public static bool Intersects (Int3 start1, Int3 end1, Int3 start2, Int3 end2) { return VectorMath.SegmentsIntersectXZ(start1, end1, start2, end2); } /** Returns if the two line segments intersects. The lines are NOT treated as infinite (just for clarification) * \see IntersectionPoint * * \deprecated Use VectorMath.SegmentsIntersectXZ instead */ [System.Obsolete("Use VectorMath.SegmentsIntersectXZ instead")] public static bool Intersects (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2) { return VectorMath.SegmentsIntersectXZ(start1, end1, start2, end2); } /** Intersection point between two infinite lines. * Lines are treated as infinite. If the lines are parallel 'start1' will be returned. Intersections are calculated on the XZ plane. * * \deprecated Use VectorMath.LineDirIntersectionPointXZ instead */ [System.Obsolete("Use VectorMath.LineDirIntersectionPointXZ instead")] public static Vector3 IntersectionPointOptimized (Vector3 start1, Vector3 dir1, Vector3 start2, Vector3 dir2) { return VectorMath.LineDirIntersectionPointXZ(start1, dir1, start2, dir2); } /** Intersection point between two infinite lines. * Lines are treated as infinite. If the lines are parallel 'start1' will be returned. Intersections are calculated on the XZ plane. * * \deprecated Use VectorMath.LineDirIntersectionPointXZ instead */ [System.Obsolete("Use VectorMath.LineDirIntersectionPointXZ instead")] public static Vector3 IntersectionPointOptimized (Vector3 start1, Vector3 dir1, Vector3 start2, Vector3 dir2, out bool intersects) { return VectorMath.LineDirIntersectionPointXZ(start1, dir1, start2, dir2, out intersects); } /** Returns if the ray (start1, end1) intersects the segment (start2, end2). * false is returned if the lines are parallel. * Only the XZ coordinates are used. * \todo Double check that this actually works * * \deprecated Use VectorMath.RaySegmentIntersectXZ instead */ [System.Obsolete("Use VectorMath.RaySegmentIntersectXZ instead")] public static bool IntersectionFactorRaySegment (Int3 start1, Int3 end1, Int3 start2, Int3 end2) { return VectorMath.RaySegmentIntersectXZ(start1, end1, start2, end2); } /** Returns the intersection factors for line 1 and line 2. The intersection factors is a distance along the line \a start - \a end where the other line intersects it.\n * \code intersectionPoint = start1 + factor1 * (end1-start1) \endcode * \code intersectionPoint2 = start2 + factor2 * (end2-start2) \endcode * Lines are treated as infinite.\n * false is returned if the lines are parallel and true if they are not. * Only the XZ coordinates are used. * * \deprecated Use VectorMath.LineIntersectionFactorXZ instead */ [System.Obsolete("Use VectorMath.LineIntersectionFactorXZ instead")] public static bool IntersectionFactor (Int3 start1, Int3 end1, Int3 start2, Int3 end2, out float factor1, out float factor2) { return VectorMath.LineIntersectionFactorXZ(start1, end1, start2, end2, out factor1, out factor2); } /** Returns the intersection factors for line 1 and line 2. The intersection factors is a distance along the line \a start - \a end where the other line intersects it.\n * \code intersectionPoint = start1 + factor1 * (end1-start1) \endcode * \code intersectionPoint2 = start2 + factor2 * (end2-start2) \endcode * Lines are treated as infinite.\n * false is returned if the lines are parallel and true if they are not. * Only the XZ coordinates are used. * * \deprecated Use VectorMath.LineIntersectionFactorXZ instead */ [System.Obsolete("Use VectorMath.LineIntersectionFactorXZ instead")] public static bool IntersectionFactor (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2, out float factor1, out float factor2) { return VectorMath.LineIntersectionFactorXZ(start1, end1, start2, end2, out factor1, out factor2); } /** Returns the intersection factor for line 1 with ray 2. * The intersection factors is a factor distance along the line \a start - \a end where the other line intersects it.\n * \code intersectionPoint = start1 + factor * (end1-start1) \endcode * Lines are treated as infinite.\n * * The second "line" is treated as a ray, meaning only matches on start2 or forwards towards end2 (and beyond) will be returned * If the point lies on the wrong side of the ray start, Nan will be returned. * * NaN is returned if the lines are parallel. * * \deprecated Use VectorMath.LineRayIntersectionFactorXZ instead */ [System.Obsolete("Use VectorMath.LineRayIntersectionFactorXZ instead")] public static float IntersectionFactorRay (Int3 start1, Int3 end1, Int3 start2, Int3 end2) { return VectorMath.LineRayIntersectionFactorXZ(start1, end1, start2, end2); } /** Returns the intersection factor for line 1 with line 2. * The intersection factor is a distance along the line \a start1 - \a end1 where the line \a start2 - \a end2 intersects it.\n * \code intersectionPoint = start1 + intersectionFactor * (end1-start1) \endcode. * Lines are treated as infinite.\n * -1 is returned if the lines are parallel (note that this is a valid return value if they are not parallel too) * * \deprecated Use VectorMath.LineIntersectionFactorXZ instead */ [System.Obsolete("Use VectorMath.LineIntersectionFactorXZ instead")] public static float IntersectionFactor (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2) { return VectorMath.LineIntersectionFactorXZ(start1, end1, start2, end2); } /** Returns the intersection point between the two lines. Lines are treated as infinite. \a start1 is returned if the lines are parallel * \deprecated Use VectorMath.LineIntersectionPointXZ instead */ [System.Obsolete("Use VectorMath.LineIntersectionPointXZ instead")] public static Vector3 IntersectionPoint (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2) { return VectorMath.LineIntersectionPointXZ(start1, end1, start2, end2); } /** Returns the intersection point between the two lines. Lines are treated as infinite. \a start1 is returned if the lines are parallel * \deprecated Use VectorMath.LineIntersectionPointXZ instead */ [System.Obsolete("Use VectorMath.LineIntersectionPointXZ instead")] public static Vector3 IntersectionPoint (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2, out bool intersects) { return VectorMath.LineIntersectionPointXZ(start1, end1, start2, end2, out intersects); } /** Returns the intersection point between the two lines. Lines are treated as infinite. \a start1 is returned if the lines are parallel * \deprecated Use VectorMath.LineIntersectionPoint instead */ [System.Obsolete("Use VectorMath.LineIntersectionPoint instead")] public static Vector2 IntersectionPoint (Vector2 start1, Vector2 end1, Vector2 start2, Vector2 end2) { return VectorMath.LineIntersectionPoint(start1, end1, start2, end2); } /** Returns the intersection point between the two lines. Lines are treated as infinite. \a start1 is returned if the lines are parallel * \deprecated Use VectorMath.LineIntersectionPoint instead */ [System.Obsolete("Use VectorMath.LineIntersectionPoint instead")] public static Vector2 IntersectionPoint (Vector2 start1, Vector2 end1, Vector2 start2, Vector2 end2, out bool intersects) { return VectorMath.LineIntersectionPoint(start1, end1, start2, end2, out intersects); } /** Returns the intersection point between the two line segments in XZ space. * Lines are NOT treated as infinite. \a start1 is returned if the line segments do not intersect * The point will be returned along the line [start1, end1] (this matters only for the y coordinate). * * \deprecated Use VectorMath.SegmentIntersectionPointXZ instead */ [System.Obsolete("Use VectorMath.SegmentIntersectionPointXZ instead")] public static Vector3 SegmentIntersectionPoint (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2, out bool intersects) { return VectorMath.SegmentIntersectionPointXZ(start1, end1, start2, end2, out intersects); } /** Calculates convex hull in XZ space for the points. * Implemented using the very simple Gift Wrapping Algorithm * which has a complexity of O(nh) where \a n is the number of points and \a h is the number of points on the hull, * so it is in the worst case quadratic. * * \deprecated Use ConvexHullXZ instead */ [System.Obsolete("Use ConvexHullXZ instead")] public static Vector3[] ConvexHull (Vector3[] points) { return ConvexHullXZ(points); } /** Calculates convex hull in XZ space for the points. * Implemented using the very simple Gift Wrapping Algorithm * which has a complexity of O(nh) where \a n is the number of points and \a h is the number of points on the hull, * so it is in the worst case quadratic. */ public static Vector3[] ConvexHullXZ (Vector3[] points) { if (points.Length == 0) return new Vector3[0]; var hull = ListPool.Claim(); int pointOnHull = 0; for (int i = 1; i < points.Length; i++) if (points[i].x < points[pointOnHull].x) pointOnHull = i; int startpoint = pointOnHull; int counter = 0; do { hull.Add(points[pointOnHull]); int endpoint = 0; for (int i = 0; i < points.Length; i++) if (endpoint == pointOnHull || !VectorMath.RightOrColinearXZ(points[pointOnHull], points[endpoint], points[i])) endpoint = i; pointOnHull = endpoint; counter++; if (counter > 10000) { #if !SERVER UnityEngine.Debug.LogWarning("Infinite Loop in Convex Hull Calculation"); #endif break; } } while (pointOnHull != startpoint); var result = hull.ToArray(); // Return to pool ListPool.Release(hull); return result; } /** Closest point on the triangle \a abc to the point \a p. * \see 'Real Time Collision Detection' by Christer Ericson, chapter 5.1, page 141 */ public static Vector2 ClosestPointOnTriangle (Vector2 a, Vector2 b, Vector2 c, Vector2 p) { // Check if p is in vertex region outside A var ab = b - a; var ac = c - a; var ap = p - a; var d1 = Vector2.Dot(ab, ap); var d2 = Vector2.Dot(ac, ap); // Barycentric coordinates (1,0,0) if (d1 <= 0 && d2 <= 0) { return a; } // Check if p is in vertex region outside B var bp = p - b; var d3 = Vector2.Dot(ab, bp); var d4 = Vector2.Dot(ac, bp); // Barycentric coordinates (0,1,0) if (d3 >= 0 && d4 <= d3) { return b; } // Check if p is in edge region outside AB, if so return a projection of p onto AB if (d1 >= 0 && d3 <= 0) { var vc = d1 * d4 - d3 * d2; if (vc <= 0) { // Barycentric coordinates (1-v, v, 0) var v = d1 / (d1 - d3); return a + ab*v; } } // Check if p is in vertex region outside C var cp = p - c; var d5 = Vector2.Dot(ab, cp); var d6 = Vector2.Dot(ac, cp); // Barycentric coordinates (0,0,1) if (d6 >= 0 && d5 <= d6) { return c; } // Check if p is in edge region of AC, if so return a projection of p onto AC if (d2 >= 0 && d6 <= 0) { var vb = d5 * d2 - d1 * d6; if (vb <= 0) { // Barycentric coordinates (1-v, 0, v) var v = d2 / (d2 - d6); return a + ac*v; } } // Check if p is in edge region of BC, if so return projection of p onto BC if ((d4 - d3) >= 0 && (d5 - d6) >= 0) { var va = d3 * d6 - d5 * d4; if (va <= 0) { var v = (d4 - d3) / ((d4 - d3) + (d5 - d6)); return b + (c - b) * v; } } return p; } /** Closest point on the triangle \a abc to the point \a p when seen from above. * \see 'Real Time Collision Detection' by Christer Ericson, chapter 5.1, page 141 */ public static Vector3 ClosestPointOnTriangleXZ (Vector3 a, Vector3 b, Vector3 c, Vector3 p) { // Check if p is in vertex region outside A var ab = new Vector2(b.x - a.x, b.z - a.z); var ac = new Vector2(c.x - a.x, c.z - a.z); var ap = new Vector2(p.x - a.x, p.z - a.z); var d1 = Vector2.Dot(ab, ap); var d2 = Vector2.Dot(ac, ap); // Barycentric coordinates (1,0,0) if (d1 <= 0 && d2 <= 0) { return a; } // Check if p is in vertex region outside B var bp = new Vector2(p.x - b.x, p.z - b.z); var d3 = Vector2.Dot(ab, bp); var d4 = Vector2.Dot(ac, bp); // Barycentric coordinates (0,1,0) if (d3 >= 0 && d4 <= d3) { return b; } // Check if p is in edge region outside AB, if so return a projection of p onto AB var vc = d1 * d4 - d3 * d2; if (d1 >= 0 && d3 <= 0 && vc <= 0) { // Barycentric coordinates (1-v, v, 0) var v = d1 / (d1 - d3); return (1-v)*a + v*b; } // Check if p is in vertex region outside C var cp = new Vector2(p.x - c.x, p.z - c.z); var d5 = Vector2.Dot(ab, cp); var d6 = Vector2.Dot(ac, cp); // Barycentric coordinates (0,0,1) if (d6 >= 0 && d5 <= d6) { return c; } // Check if p is in edge region of AC, if so return a projection of p onto AC var vb = d5 * d2 - d1 * d6; if (d2 >= 0 && d6 <= 0 && vb <= 0) { // Barycentric coordinates (1-v, 0, v) var v = d2 / (d2 - d6); return (1-v)*a + v*c; } // Check if p is in edge region of BC, if so return projection of p onto BC var va = d3 * d6 - d5 * d4; if ((d4 - d3) >= 0 && (d5 - d6) >= 0 && va <= 0) { var v = (d4 - d3) / ((d4 - d3) + (d5 - d6)); return b + (c - b) * v; } else { // P is inside the face region. Compute the point using its barycentric coordinates (u, v, w) // Note that the x and z coordinates will be exactly the same as P's x and z coordinates var denom = 1f / (va + vb + vc); var v = vb * denom; var w = vc * denom; return new Vector3(p.x, (1 - v - w)*a.y + v*b.y + w*c.y, p.z); } } /** Closest point on the triangle \a abc to the point \a p. * \see 'Real Time Collision Detection' by Christer Ericson, chapter 5.1, page 141 */ public static Vector3 ClosestPointOnTriangle (Vector3 a, Vector3 b, Vector3 c, Vector3 p) { // Check if p is in vertex region outside A var ab = b - a; var ac = c - a; var ap = p - a; var d1 = Vector3.Dot(ab, ap); var d2 = Vector3.Dot(ac, ap); // Barycentric coordinates (1,0,0) if (d1 <= 0 && d2 <= 0) return a; // Check if p is in vertex region outside B var bp = p - b; var d3 = Vector3.Dot(ab, bp); var d4 = Vector3.Dot(ac, bp); // Barycentric coordinates (0,1,0) if (d3 >= 0 && d4 <= d3) return b; // Check if p is in edge region outside AB, if so return a projection of p onto AB var vc = d1 * d4 - d3 * d2; if (d1 >= 0 && d3 <= 0 && vc <= 0) { // Barycentric coordinates (1-v, v, 0) var v = d1 / (d1 - d3); return a + ab * v; } // Check if p is in vertex region outside C var cp = p - c; var d5 = Vector3.Dot(ab, cp); var d6 = Vector3.Dot(ac, cp); // Barycentric coordinates (0,0,1) if (d6 >= 0 && d5 <= d6) return c; // Check if p is in edge region of AC, if so return a projection of p onto AC var vb = d5 * d2 - d1 * d6; if (d2 >= 0 && d6 <= 0 && vb <= 0) { // Barycentric coordinates (1-v, 0, v) var v = d2 / (d2 - d6); return a + ac * v; } // Check if p is in edge region of BC, if so return projection of p onto BC var va = d3 * d6 - d5 * d4; if ((d4 - d3) >= 0 && (d5 - d6) >= 0 && va <= 0) { var v = (d4 - d3) / ((d4 - d3) + (d5 - d6)); return b + (c - b) * v; } else { // P is inside the face region. Compute the point using its barycentric coordinates (u, v, w) var denom = 1f / (va + vb + vc); var v = vb * denom; var w = vc * denom; // This is equal to: u*a + v*b + w*c, u = va*denom = 1 - v - w; return a + ab * v + ac * w; } } /** Get the 3D minimum distance between 2 segments * Input: two 3D line segments S1 and S2 * \returns the shortest squared distance between S1 and S2 * * \deprecated Use VectorMath.SqrDistanceSegmentSegment instead */ [System.Obsolete("Use VectorMath.SqrDistanceSegmentSegment instead")] public static float DistanceSegmentSegment3D (Vector3 s1, Vector3 e1, Vector3 s2, Vector3 e2) { return VectorMath.SqrDistanceSegmentSegment(s1, e1, s2, e2); } /** Cached dictionary to avoid excessive allocations */ static readonly Dictionary cached_Int3_int_dict = new Dictionary(); /** Compress the mesh by removing duplicate vertices. * * \param vertices Vertices of the input mesh * \param triangles Triangles of the input mesh * \param outVertices Vertices of the output mesh. * \param outTriangles Triangles of the output mesh. * * Vertices that differ by only 1 along the y coordinate will also be merged together. * \warning This function is not threadsafe. It uses some cached structures to reduce allocations. */ public static void CompressMesh (List vertices, List triangles, out Int3[] outVertices, out int[] outTriangles) { Dictionary firstVerts = cached_Int3_int_dict; firstVerts.Clear(); // Use cached array to reduce memory allocations int[] compressedPointers = ArrayPool.Claim(vertices.Count); // Map positions to the first index they were encountered at int count = 0; for (int i = 0; i < vertices.Count; i++) { // Check if the vertex position has already been added // Also check one position up and one down because rounding errors can cause vertices // that should end up in the same position to be offset 1 unit from each other // TODO: Check along X and Z axes as well? int ind; if (!firstVerts.TryGetValue(vertices[i], out ind) && !firstVerts.TryGetValue(vertices[i] + new Int3(0, 1, 0), out ind) && !firstVerts.TryGetValue(vertices[i] + new Int3(0, -1, 0), out ind)) { firstVerts.Add(vertices[i], count); compressedPointers[i] = count; vertices[count] = vertices[i]; count++; } else { compressedPointers[i] = ind; } } // Create the triangle array or reuse the existing buffer outTriangles = new int[triangles.Count]; // Remap the triangles to the new compressed indices for (int i = 0; i < outTriangles.Length; i++) { outTriangles[i] = compressedPointers[triangles[i]]; } // Create the vertex array or reuse the existing buffer outVertices = new Int3[count]; for (int i = 0; i < count; i++) outVertices[i] = vertices[i]; ArrayPool.Release(ref compressedPointers); } /** Given a set of edges between vertices, follows those edges and returns them as chains and cycles. * \param outline outline[a] = b if there is an edge from \a a to \a b. * \param hasInEdge \a hasInEdge should contain \a b if outline[a] = b for any key \a a. * \param results Will be called once for each contour with the contour as a parameter as well as a boolean indicating if the contour is a cycle or a chain (see image). * * \shadowimage{grid_contour_compressed.png} */ public static void TraceContours (Dictionary outline, HashSet hasInEdge, System.Action, bool> results) { // Iterate through chains of the navmesh outline. // I.e segments of the outline that are not loops // we need to start these at the beginning of the chain. // Then iterate over all the loops of the outline. // Since they are loops, we can start at any point. var obstacleVertices = ListPool.Claim(); var outlineKeys = ListPool.Claim(); outlineKeys.AddRange(outline.Keys); for (int k = 0; k <= 1; k++) { bool cycles = k == 1; for (int i = 0; i < outlineKeys.Count; i++) { var startIndex = outlineKeys[i]; // Chains (not cycles) need to start at the start of the chain // Cycles can start at any point if (!cycles && hasInEdge.Contains(startIndex)) { continue; } var index = startIndex; obstacleVertices.Clear(); obstacleVertices.Add(index); while (outline.ContainsKey(index)) { var next = outline[index]; outline.Remove(index); obstacleVertices.Add(next); // We traversed a full cycle if (next == startIndex) break; index = next; } if (obstacleVertices.Count > 1) { results(obstacleVertices, cycles); } } } ListPool.Release(ref outlineKeys); ListPool.Release(ref obstacleVertices); } /** Divides each segment in the list into \a subSegments segments and fills the result list with the new points */ public static void Subdivide (List points, List result, int subSegments) { for (int i = 0; i < points.Count-1; i++) for (int j = 0; j < subSegments; j++) result.Add(Vector3.Lerp(points[i], points[i+1], j / (float)subSegments)); result.Add(points[points.Count-1]); } } }