| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702 |
- using System.Collections.Generic;
- using System;
- namespace PF {
- /** Contains various spline functions.
- * \ingroup utils
- */
- static class AstarSplines {
- public static Vector3 CatmullRom (Vector3 previous, Vector3 start, Vector3 end, Vector3 next, float elapsedTime) {
- // References used:
- // p.266 GemsV1
- //
- // tension is often set to 0.5 but you can use any reasonable value:
- // http://www.cs.cmu.edu/~462/projects/assn2/assn2/catmullRom.pdf
- //
- // bias and tension controls:
- // http://local.wasp.uwa.edu.au/~pbourke/miscellaneous/interpolation/
- float percentComplete = elapsedTime;
- float percentCompleteSquared = percentComplete * percentComplete;
- float percentCompleteCubed = percentCompleteSquared * percentComplete;
- return
- previous * (-0.5F*percentCompleteCubed +
- percentCompleteSquared -
- 0.5F*percentComplete) +
- start *
- (1.5F*percentCompleteCubed +
- -2.5F*percentCompleteSquared + 1.0F) +
- end *
- (-1.5F*percentCompleteCubed +
- 2.0F*percentCompleteSquared +
- 0.5F*percentComplete) +
- next *
- (0.5F*percentCompleteCubed -
- 0.5F*percentCompleteSquared);
- }
- [System.Obsolete("Use CatmullRom")]
- public static Vector3 CatmullRomOLD (Vector3 previous, Vector3 start, Vector3 end, Vector3 next, float elapsedTime) {
- return CatmullRom(previous, start, end, next, elapsedTime);
- }
- /** Returns a point on a cubic bezier curve. \a t is clamped between 0 and 1 */
- public static Vector3 CubicBezier (Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3, float t) {
- t = Mathf.Clamp01(t);
- float t2 = 1-t;
- return t2*t2*t2 * p0 + 3 * t2*t2 * t * p1 + 3 * t2 * t*t * p2 + t*t*t * p3;
- }
- /** Returns the derivative for a point on a cubic bezier curve. \a t is clamped between 0 and 1 */
- public static Vector3 CubicBezierDerivative (Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3, float t) {
- t = Mathf.Clamp01(t);
- float t2 = 1-t;
- return 3*t2*t2*(p1-p0) + 6*t2*t*(p2 - p1) + 3*t*t*(p3 - p2);
- }
- /** Returns the second derivative for a point on a cubic bezier curve. \a t is clamped between 0 and 1 */
- public static Vector3 CubicBezierSecondDerivative (Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3, float t) {
- t = Mathf.Clamp01(t);
- float t2 = 1-t;
- return 6*t2*(p2 - 2*p1 + p0) + 6*t*(p3 - 2*p2 + p1);
- }
- }
- /** Various vector math utility functions.
- * \version A lot of functions in the Polygon class have been moved to this class
- * the names have changed slightly and everything now consistently assumes a left handed
- * coordinate system now instead of sometimes using a left handed one and sometimes
- * using a right handed one. This is why the 'Left' methods in the Polygon class redirect
- * to methods named 'Right'. The functionality is exactly the same.
- *
- * Note the difference between segments and lines. Lines are infinitely
- * long but segments have only a finite length.
- *
- * \ingroup utils
- */
- public static class VectorMath {
- /** Complex number multiplication.
- * \returns a * b
- *
- * Used to rotate vectors in an efficient way.
- *
- * \see https://en.wikipedia.org/wiki/Complex_number#Multiplication_and_division
- */
- public static Vector2 ComplexMultiply (Vector2 a, Vector2 b) {
- return new Vector2(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);
- }
- /** Complex number multiplication.
- * \returns a * conjugate(b)
- *
- * Used to rotate vectors in an efficient way.
- *
- * \see https://en.wikipedia.org/wiki/Complex_number#Multiplication_and_division
- * \see https://en.wikipedia.org/wiki/Complex_conjugate
- */
- public static Vector2 ComplexMultiplyConjugate (Vector2 a, Vector2 b) {
- return new Vector2(a.x * b.x + a.y * b.y, a.y * b.x - a.x * b.y);
- }
- /** Returns the closest point on the line.
- * The line is treated as infinite.
- * \see ClosestPointOnSegment
- * \see ClosestPointOnLineFactor
- */
- public static Vector3 ClosestPointOnLine (Vector3 lineStart, Vector3 lineEnd, Vector3 point) {
- Vector3 lineDirection = Vector3.Normalize(lineEnd - lineStart);
- float dot = Vector3.Dot(point - lineStart, lineDirection);
- return lineStart + (dot*lineDirection);
- }
- /** Factor along the line which is closest to the point.
- * Returned value is in the range [0,1] if the point lies on the segment otherwise it just lies on the line.
- * The closest point can be calculated using (end-start)*factor + start.
- *
- * \see ClosestPointOnLine
- * \see ClosestPointOnSegment
- */
- public static float ClosestPointOnLineFactor (Vector3 lineStart, Vector3 lineEnd, Vector3 point) {
- var dir = lineEnd - lineStart;
- float sqrMagn = dir.sqrMagnitude;
- if (sqrMagn <= 0.000001) return 0;
- return Vector3.Dot(point - lineStart, dir) / sqrMagn;
- }
- /** Factor along the line which is closest to the point.
- * Returned value is in the range [0,1] if the point lies on the segment otherwise it just lies on the line.
- * The closest point can be calculated using (end-start)*factor + start
- */
- public static float ClosestPointOnLineFactor (Int3 lineStart, Int3 lineEnd, Int3 point) {
- var lineDirection = lineEnd - lineStart;
- float magn = lineDirection.sqrMagnitude;
- float closestPoint = Int3.Dot((point - lineStart), lineDirection);
- if (magn != 0) closestPoint /= magn;
- return closestPoint;
- }
- /** Factor of the nearest point on the segment.
- * Returned value is in the range [0,1] if the point lies on the segment otherwise it just lies on the line.
- * The closest point can be calculated using (end-start)*factor + start;
- */
- public static float ClosestPointOnLineFactor (Int2 lineStart, Int2 lineEnd, Int2 point) {
- var lineDirection = lineEnd - lineStart;
- double magn = lineDirection.sqrMagnitudeLong;
- double closestPoint = Int2.DotLong(point - lineStart, lineDirection);
- if (magn != 0) closestPoint /= magn;
- return (float)closestPoint;
- }
- /** Returns the closest point on the segment.
- * The segment is NOT treated as infinite.
- * \see ClosestPointOnLine
- * \see ClosestPointOnSegmentXZ
- */
- public static Vector3 ClosestPointOnSegment (Vector3 lineStart, Vector3 lineEnd, Vector3 point) {
- var dir = lineEnd - lineStart;
- float sqrMagn = dir.sqrMagnitude;
- if (sqrMagn <= 0.000001) return lineStart;
- float factor = Vector3.Dot(point - lineStart, dir) / sqrMagn;
- return lineStart + Mathf.Clamp01(factor)*dir;
- }
- /** Returns the closest point on the segment in the XZ plane.
- * The y coordinate of the result will be the same as the y coordinate of the \a point parameter.
- *
- * The segment is NOT treated as infinite.
- * \see ClosestPointOnSegment
- * \see ClosestPointOnLine
- */
- public static Vector3 ClosestPointOnSegmentXZ (Vector3 lineStart, Vector3 lineEnd, Vector3 point) {
- lineStart.y = point.y;
- lineEnd.y = point.y;
- Vector3 fullDirection = lineEnd-lineStart;
- Vector3 fullDirection2 = fullDirection;
- fullDirection2.y = 0;
- float magn = fullDirection2.magnitude;
- Vector3 lineDirection = magn > float.Epsilon ? fullDirection2/magn : Vector3.zero;
- float closestPoint = Vector3.Dot((point-lineStart), lineDirection);
- return lineStart+(Mathf.Clamp(closestPoint, 0.0f, fullDirection2.magnitude)*lineDirection);
- }
- /** Returns the approximate shortest squared distance between x,z and the segment p-q.
- * The segment is not considered infinite.
- * This function is not entirely exact, but it is about twice as fast as DistancePointSegment2.
- * \todo Is this actually approximate? It looks exact.
- */
- public static float SqrDistancePointSegmentApproximate (int x, int z, int px, int pz, int qx, int qz) {
- float pqx = (float)(qx - px);
- float pqz = (float)(qz - pz);
- float dx = (float)(x - px);
- float dz = (float)(z - pz);
- float d = pqx*pqx + pqz*pqz;
- float t = pqx*dx + pqz*dz;
- if (d > 0)
- t /= d;
- if (t < 0)
- t = 0;
- else if (t > 1)
- t = 1;
- dx = px + t*pqx - x;
- dz = pz + t*pqz - z;
- return dx*dx + dz*dz;
- }
- /** Returns the approximate shortest squared distance between x,z and the segment p-q.
- * The segment is not considered infinite.
- * This function is not entirely exact, but it is about twice as fast as DistancePointSegment2.
- * \todo Is this actually approximate? It looks exact.
- */
- public static float SqrDistancePointSegmentApproximate (Int3 a, Int3 b, Int3 p) {
- float pqx = (float)(b.x - a.x);
- float pqz = (float)(b.z - a.z);
- float dx = (float)(p.x - a.x);
- float dz = (float)(p.z - a.z);
- float d = pqx*pqx + pqz*pqz;
- float t = pqx*dx + pqz*dz;
- if (d > 0)
- t /= d;
- if (t < 0)
- t = 0;
- else if (t > 1)
- t = 1;
- dx = a.x + t*pqx - p.x;
- dz = a.z + t*pqz - p.z;
- return dx*dx + dz*dz;
- }
- /** Returns the squared distance between p and the segment a-b.
- * The line is not considered infinite.
- */
- public static float SqrDistancePointSegment (Vector3 a, Vector3 b, Vector3 p) {
- var nearest = ClosestPointOnSegment(a, b, p);
- return (nearest-p).sqrMagnitude;
- }
- /** 3D minimum distance between 2 segments.
- * Input: two 3D line segments S1 and S2
- * \returns the shortest squared distance between S1 and S2
- */
- public static float SqrDistanceSegmentSegment (Vector3 s1, Vector3 e1, Vector3 s2, Vector3 e2) {
- Vector3 u = e1 - s1;
- Vector3 v = e2 - s2;
- Vector3 w = s1 - s2;
- float a = Vector3.Dot(u, u); // always >= 0
- float b = Vector3.Dot(u, v);
- float c = Vector3.Dot(v, v); // always >= 0
- float d = Vector3.Dot(u, w);
- float e = Vector3.Dot(v, w);
- float D = a*c - b*b; // always >= 0
- float sc, sN, sD = D; // sc = sN / sD, default sD = D >= 0
- float tc, tN, tD = D; // tc = tN / tD, default tD = D >= 0
- // compute the line parameters of the two closest points
- if (D < 0.000001f) { // the lines are almost parallel
- sN = 0.0f; // force using point P0 on segment S1
- sD = 1.0f; // to prevent possible division by 0.0 later
- tN = e;
- tD = c;
- } else { // get the closest points on the infinite lines
- sN = (b*e - c*d);
- tN = (a*e - b*d);
- if (sN < 0.0f) { // sc < 0 => the s=0 edge is visible
- sN = 0.0f;
- tN = e;
- tD = c;
- } else if (sN > sD) { // sc > 1 => the s=1 edge is visible
- sN = sD;
- tN = e + b;
- tD = c;
- }
- }
- if (tN < 0.0f) { // tc < 0 => the t=0 edge is visible
- tN = 0.0f;
- // recompute sc for this edge
- if (-d < 0.0f)
- sN = 0.0f;
- else if (-d > a)
- sN = sD;
- else {
- sN = -d;
- sD = a;
- }
- } else if (tN > tD) { // tc > 1 => the t=1 edge is visible
- tN = tD;
- // recompute sc for this edge
- if ((-d + b) < 0.0f)
- sN = 0;
- else if ((-d + b) > a)
- sN = sD;
- else {
- sN = (-d + b);
- sD = a;
- }
- }
- // finally do the division to get sc and tc
- sc = (Math.Abs(sN) < 0.000001f ? 0.0f : sN / sD);
- tc = (Math.Abs(tN) < 0.000001f ? 0.0f : tN / tD);
- // get the difference of the two closest points
- Vector3 dP = w + (sc * u) - (tc * v); // = S1(sc) - S2(tc)
- return dP.sqrMagnitude; // return the closest distance
- }
- /** Squared distance between two points in the XZ plane */
- public static float SqrDistanceXZ (Vector3 a, Vector3 b) {
- var delta = a-b;
- return delta.x*delta.x+delta.z*delta.z;
- }
- /** Signed area of a triangle in the XZ plane multiplied by 2.
- * This will be negative for clockwise triangles and positive for counter-clockwise ones
- */
- public static long SignedTriangleAreaTimes2XZ (Int3 a, Int3 b, Int3 c) {
- return (long)(b.x - a.x) * (long)(c.z - a.z) - (long)(c.x - a.x) * (long)(b.z - a.z);
- }
- /** Signed area of a triangle in the XZ plane multiplied by 2.
- * This will be negative for clockwise triangles and positive for counter-clockwise ones.
- */
- public static float SignedTriangleAreaTimes2XZ (Vector3 a, Vector3 b, Vector3 c) {
- return (b.x - a.x) * (c.z - a.z) - (c.x - a.x) * (b.z - a.z);
- }
- /** Returns if \a p lies on the right side of the line \a a - \a b.
- * Uses XZ space. Does not return true if the points are colinear.
- */
- public static bool RightXZ (Vector3 a, Vector3 b, Vector3 p) {
- return (b.x - a.x) * (p.z - a.z) - (p.x - a.x) * (b.z - a.z) < -float.Epsilon;
- }
- /** Returns if \a p lies on the right side of the line \a a - \a b.
- * Uses XZ space. Does not return true if the points are colinear.
- */
- public static bool RightXZ (Int3 a, Int3 b, Int3 p) {
- return (long)(b.x - a.x) * (long)(p.z - a.z) - (long)(p.x - a.x) * (long)(b.z - a.z) < 0;
- }
- /** Returns which side of the line \a a - \a b that \a p lies on.
- * Uses XZ space.
- */
- public static Side SideXZ (Int3 a, Int3 b, Int3 p) {
- var s = (long)(b.x - a.x) * (long)(p.z - a.z) - (long)(p.x - a.x) * (long)(b.z - a.z);
- return s > 0 ? Side.Left : (s < 0 ? Side.Right : Side.Colinear);
- }
- /** Returns if \a p lies on the right side of the line \a a - \a b.
- * Also returns true if the points are colinear.
- */
- public static bool RightOrColinear (Vector2 a, Vector2 b, Vector2 p) {
- return (b.x - a.x) * (p.y - a.y) - (p.x - a.x) * (b.y - a.y) <= 0;
- }
- /** Returns if \a p lies on the right side of the line \a a - \a b.
- * Also returns true if the points are colinear.
- */
- public static bool RightOrColinear (Int2 a, Int2 b, Int2 p) {
- return (long)(b.x - a.x) * (long)(p.y - a.y) - (long)(p.x - a.x) * (long)(b.y - a.y) <= 0;
- }
- /** Returns if \a p lies on the left side of the line \a a - \a b.
- * Uses XZ space. Also returns true if the points are colinear.
- */
- public static bool RightOrColinearXZ (Vector3 a, Vector3 b, Vector3 p) {
- return (b.x - a.x) * (p.z - a.z) - (p.x - a.x) * (b.z - a.z) <= 0;
- }
- /** Returns if \a p lies on the left side of the line \a a - \a b.
- * Uses XZ space. Also returns true if the points are colinear.
- */
- public static bool RightOrColinearXZ (Int3 a, Int3 b, Int3 p) {
- return (long)(b.x - a.x) * (long)(p.z - a.z) - (long)(p.x - a.x) * (long)(b.z - a.z) <= 0;
- }
- /** Returns if the points a in a clockwise order.
- * Will return true even if the points are colinear or very slightly counter-clockwise
- * (if the signed area of the triangle formed by the points has an area less than or equals to float.Epsilon) */
- public static bool IsClockwiseMarginXZ (Vector3 a, Vector3 b, Vector3 c) {
- return (b.x-a.x)*(c.z-a.z)-(c.x-a.x)*(b.z-a.z) <= float.Epsilon;
- }
- /** Returns if the points a in a clockwise order */
- public static bool IsClockwiseXZ (Vector3 a, Vector3 b, Vector3 c) {
- return (b.x-a.x)*(c.z-a.z)-(c.x-a.x)*(b.z-a.z) < 0;
- }
- /** Returns if the points a in a clockwise order */
- public static bool IsClockwiseXZ (Int3 a, Int3 b, Int3 c) {
- return RightXZ(a, b, c);
- }
- /** Returns true if the points a in a clockwise order or if they are colinear */
- public static bool IsClockwiseOrColinearXZ (Int3 a, Int3 b, Int3 c) {
- return RightOrColinearXZ(a, b, c);
- }
- /** Returns true if the points a in a clockwise order or if they are colinear */
- public static bool IsClockwiseOrColinear (Int2 a, Int2 b, Int2 c) {
- return RightOrColinear(a, b, c);
- }
- /** Returns if the points are colinear (lie on a straight line) */
- public static bool IsColinear (Vector3 a, Vector3 b, Vector3 c) {
- var lhs = b - a;
- var rhs = c - a;
- // Take the cross product of lhs and rhs
- // The magnitude of the cross product will be zero if the points a,b,c are colinear
- float x = lhs.y * rhs.z - lhs.z * rhs.y;
- float y = lhs.z * rhs.x - lhs.x * rhs.z;
- float z = lhs.x * rhs.y - lhs.y * rhs.x;
- float v = x*x + y*y + z*z;
- // Epsilon not chosen with much thought, just that float.Epsilon was a bit too small.
- return v <= 0.0000001f;
- }
- /** Returns if the points are colinear (lie on a straight line) */
- public static bool IsColinear (Vector2 a, Vector2 b, Vector2 c) {
- float v = (b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y);
- // Epsilon not chosen with much thought, just that float.Epsilon was a bit too small.
- return v <= 0.0000001f && v >= -0.0000001f;
- }
- /** Returns if the points are colinear (lie on a straight line) */
- public static bool IsColinearXZ (Int3 a, Int3 b, Int3 c) {
- return (long)(b.x - a.x) * (long)(c.z - a.z) - (long)(c.x - a.x) * (long)(b.z - a.z) == 0;
- }
- /** Returns if the points are colinear (lie on a straight line) */
- public static bool IsColinearXZ (Vector3 a, Vector3 b, Vector3 c) {
- float v = (b.x-a.x)*(c.z-a.z)-(c.x-a.x)*(b.z-a.z);
- // Epsilon not chosen with much thought, just that float.Epsilon was a bit too small.
- return v <= 0.0000001f && v >= -0.0000001f;
- }
- /** Returns if the points are colinear (lie on a straight line) */
- public static bool IsColinearAlmostXZ (Int3 a, Int3 b, Int3 c) {
- long v = (long)(b.x - a.x) * (long)(c.z - a.z) - (long)(c.x - a.x) * (long)(b.z - a.z);
- return v > -1 && v < 1;
- }
- /** Returns if the line segment \a start2 - \a end2 intersects the line segment \a start1 - \a end1.
- * If only the endpoints coincide, the result is undefined (may be true or false).
- */
- public static bool SegmentsIntersect (Int2 start1, Int2 end1, Int2 start2, Int2 end2) {
- return RightOrColinear(start1, end1, start2) != RightOrColinear(start1, end1, end2) && RightOrColinear(start2, end2, start1) != RightOrColinear(start2, end2, end1);
- }
- /** Returns if the line segment \a start2 - \a end2 intersects the line segment \a start1 - \a end1.
- * If only the endpoints coincide, the result is undefined (may be true or false).
- *
- * \note XZ space
- */
- public static bool SegmentsIntersectXZ (Int3 start1, Int3 end1, Int3 start2, Int3 end2) {
- return RightOrColinearXZ(start1, end1, start2) != RightOrColinearXZ(start1, end1, end2) && RightOrColinearXZ(start2, end2, start1) != RightOrColinearXZ(start2, end2, end1);
- }
- /** Returns if the two line segments intersects. The lines are NOT treated as infinite (just for clarification)
- * \see IntersectionPoint
- */
- public static bool SegmentsIntersectXZ (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2) {
- Vector3 dir1 = end1-start1;
- Vector3 dir2 = end2-start2;
- float den = dir2.z*dir1.x - dir2.x * dir1.z;
- if (den == 0) {
- return false;
- }
- float nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x);
- float nom2 = dir1.x*(start1.z-start2.z) - dir1.z * (start1.x - start2.x);
- float u = nom/den;
- float u2 = nom2/den;
- if (u < 0F || u > 1F || u2 < 0F || u2 > 1F) {
- return false;
- }
- return true;
- }
- /** Intersection point between two infinite lines.
- * Note that start points and directions are taken as parameters instead of start and end points.
- * Lines are treated as infinite. If the lines are parallel 'start1' will be returned.
- * Intersections are calculated on the XZ plane.
- *
- * \see LineIntersectionPointXZ
- */
- public static Vector3 LineDirIntersectionPointXZ (Vector3 start1, Vector3 dir1, Vector3 start2, Vector3 dir2) {
- float den = dir2.z*dir1.x - dir2.x * dir1.z;
- if (den == 0) {
- return start1;
- }
- float nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x);
- float u = nom/den;
- return start1 + dir1*u;
- }
- /** Intersection point between two infinite lines.
- * Note that start points and directions are taken as parameters instead of start and end points.
- * Lines are treated as infinite. If the lines are parallel 'start1' will be returned.
- * Intersections are calculated on the XZ plane.
- *
- * \see LineIntersectionPointXZ
- */
- public static Vector3 LineDirIntersectionPointXZ (Vector3 start1, Vector3 dir1, Vector3 start2, Vector3 dir2, out bool intersects) {
- float den = dir2.z*dir1.x - dir2.x * dir1.z;
- if (den == 0) {
- intersects = false;
- return start1;
- }
- float nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x);
- float u = nom/den;
- intersects = true;
- return start1 + dir1*u;
- }
- /** Returns if the ray (start1, end1) intersects the segment (start2, end2).
- * false is returned if the lines are parallel.
- * Only the XZ coordinates are used.
- * \todo Double check that this actually works
- */
- public static bool RaySegmentIntersectXZ (Int3 start1, Int3 end1, Int3 start2, Int3 end2) {
- Int3 dir1 = end1-start1;
- Int3 dir2 = end2-start2;
- long den = dir2.z*dir1.x - dir2.x * dir1.z;
- if (den == 0) {
- return false;
- }
- long nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x);
- long nom2 = dir1.x*(start1.z-start2.z) - dir1.z * (start1.x - start2.x);
- //factor1 < 0
- // If both have the same sign, then nom/den < 0 and thus the segment cuts the ray before the ray starts
- if (!(nom < 0 ^ den < 0)) {
- return false;
- }
- //factor2 < 0
- if (!(nom2 < 0 ^ den < 0)) {
- return false;
- }
- if ((den >= 0 && nom2 > den) || (den < 0 && nom2 <= den)) {
- return false;
- }
- return true;
- }
- /** Returns the intersection factors for line 1 and line 2. The intersection factors is a distance along the line \a start - \a end where the other line intersects it.\n
- * \code intersectionPoint = start1 + factor1 * (end1-start1) \endcode
- * \code intersectionPoint2 = start2 + factor2 * (end2-start2) \endcode
- * Lines are treated as infinite.\n
- * false is returned if the lines are parallel and true if they are not.
- * Only the XZ coordinates are used.
- */
- public static bool LineIntersectionFactorXZ (Int3 start1, Int3 end1, Int3 start2, Int3 end2, out float factor1, out float factor2) {
- Int3 dir1 = end1-start1;
- Int3 dir2 = end2-start2;
- long den = dir2.z*dir1.x - dir2.x * dir1.z;
- if (den == 0) {
- factor1 = 0;
- factor2 = 0;
- return false;
- }
- long nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x);
- long nom2 = dir1.x*(start1.z-start2.z) - dir1.z * (start1.x - start2.x);
- factor1 = (float)nom/den;
- factor2 = (float)nom2/den;
- return true;
- }
- /** Returns the intersection factors for line 1 and line 2. The intersection factors is a distance along the line \a start - \a end where the other line intersects it.\n
- * \code intersectionPoint = start1 + factor1 * (end1-start1) \endcode
- * \code intersectionPoint2 = start2 + factor2 * (end2-start2) \endcode
- * Lines are treated as infinite.\n
- * false is returned if the lines are parallel and true if they are not.
- * Only the XZ coordinates are used.
- */
- public static bool LineIntersectionFactorXZ (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2, out float factor1, out float factor2) {
- Vector3 dir1 = end1-start1;
- Vector3 dir2 = end2-start2;
- float den = dir2.z*dir1.x - dir2.x * dir1.z;
- if (den <= 0.00001f && den >= -0.00001f) {
- factor1 = 0;
- factor2 = 0;
- return false;
- }
- float nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x);
- float nom2 = dir1.x*(start1.z-start2.z) - dir1.z * (start1.x - start2.x);
- float u = nom/den;
- float u2 = nom2/den;
- factor1 = u;
- factor2 = u2;
- return true;
- }
- /** Returns the intersection factor for line 1 with ray 2.
- * The intersection factors is a factor distance along the line \a start - \a end where the other line intersects it.\n
- * \code intersectionPoint = start1 + factor * (end1-start1) \endcode
- * Lines are treated as infinite.\n
- *
- * The second "line" is treated as a ray, meaning only matches on start2 or forwards towards end2 (and beyond) will be returned
- * If the point lies on the wrong side of the ray start, Nan will be returned.
- *
- * NaN is returned if the lines are parallel. */
- public static float LineRayIntersectionFactorXZ (Int3 start1, Int3 end1, Int3 start2, Int3 end2) {
- Int3 dir1 = end1-start1;
- Int3 dir2 = end2-start2;
- int den = dir2.z*dir1.x - dir2.x * dir1.z;
- if (den == 0) {
- return float.NaN;
- }
- int nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x);
- int nom2 = dir1.x*(start1.z-start2.z) - dir1.z * (start1.x - start2.x);
- if ((float)nom2/den < 0) {
- return float.NaN;
- }
- return (float)nom/den;
- }
- /** Returns the intersection factor for line 1 with line 2.
- * The intersection factor is a distance along the line \a start1 - \a end1 where the line \a start2 - \a end2 intersects it.\n
- * \code intersectionPoint = start1 + intersectionFactor * (end1-start1) \endcode.
- * Lines are treated as infinite.\n
- * -1 is returned if the lines are parallel (note that this is a valid return value if they are not parallel too) */
- public static float LineIntersectionFactorXZ (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2) {
- Vector3 dir1 = end1-start1;
- Vector3 dir2 = end2-start2;
- float den = dir2.z*dir1.x - dir2.x * dir1.z;
- if (den == 0) {
- return -1;
- }
- float nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x);
- float u = nom/den;
- return u;
- }
- /** Returns the intersection point between the two lines. Lines are treated as infinite. \a start1 is returned if the lines are parallel */
- public static Vector3 LineIntersectionPointXZ (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2) {
- bool s;
- return LineIntersectionPointXZ(start1, end1, start2, end2, out s);
- }
- /** Returns the intersection point between the two lines. Lines are treated as infinite. \a start1 is returned if the lines are parallel */
- public static Vector3 LineIntersectionPointXZ (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2, out bool intersects) {
- Vector3 dir1 = end1-start1;
- Vector3 dir2 = end2-start2;
- float den = dir2.z*dir1.x - dir2.x * dir1.z;
- if (den == 0) {
- intersects = false;
- return start1;
- }
- float nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x);
- float u = nom/den;
- intersects = true;
- return start1 + dir1*u;
- }
- /** Returns the intersection point between the two lines. Lines are treated as infinite. \a start1 is returned if the lines are parallel */
- public static Vector2 LineIntersectionPoint (Vector2 start1, Vector2 end1, Vector2 start2, Vector2 end2) {
- bool s;
- return LineIntersectionPoint(start1, end1, start2, end2, out s);
- }
- /** Returns the intersection point between the two lines. Lines are treated as infinite. \a start1 is returned if the lines are parallel */
- public static Vector2 LineIntersectionPoint (Vector2 start1, Vector2 end1, Vector2 start2, Vector2 end2, out bool intersects) {
- Vector2 dir1 = end1-start1;
- Vector2 dir2 = end2-start2;
- float den = dir2.y*dir1.x - dir2.x * dir1.y;
- if (den == 0) {
- intersects = false;
- return start1;
- }
- float nom = dir2.x*(start1.y-start2.y)- dir2.y*(start1.x-start2.x);
- float u = nom/den;
- intersects = true;
- return start1 + dir1*u;
- }
- /** Returns the intersection point between the two line segments in XZ space.
- * Lines are NOT treated as infinite. \a start1 is returned if the line segments do not intersect
- * The point will be returned along the line [start1, end1] (this matters only for the y coordinate).
- */
- public static Vector3 SegmentIntersectionPointXZ (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2, out bool intersects) {
- Vector3 dir1 = end1-start1;
- Vector3 dir2 = end2-start2;
- float den = dir2.z * dir1.x - dir2.x * dir1.z;
- if (den == 0) {
- intersects = false;
- return start1;
- }
- float nom = dir2.x*(start1.z-start2.z)- dir2.z*(start1.x-start2.x);
- float nom2 = dir1.x*(start1.z-start2.z) - dir1.z*(start1.x-start2.x);
- float u = nom/den;
- float u2 = nom2/den;
- if (u < 0F || u > 1F || u2 < 0F || u2 > 1F) {
- intersects = false;
- return start1;
- }
- intersects = true;
- return start1 + dir1*u;
- }
- /** Intersection of a line and a circle.
- * Returns the greatest t such that segmentStart+t*(segmentEnd-segmentStart) lies on the circle.
- *
- * In case the line does not intersect with the circle, the closest point on the line
- * to the circle will be returned.
- *
- * \note Works for line and sphere in 3D space as well.
- *
- * \see http://mathworld.wolfram.com/Circle-LineIntersection.html
- * \see https://en.wikipedia.org/wiki/Intersection_(Euclidean_geometry)#A_line_and_a_circle
- */
- public static float LineCircleIntersectionFactor (Vector3 circleCenter, Vector3 linePoint1, Vector3 linePoint2, float radius) {
- float segmentLength;
- var normalizedDirection = Normalize(linePoint2 - linePoint1, out segmentLength);
- var dirToStart = linePoint1 - circleCenter;
- var dot = Vector3.Dot(dirToStart, normalizedDirection);
- var discriminant = dot * dot - (dirToStart.sqrMagnitude - radius*radius);
- if (discriminant < 0) {
- // No intersection, pick closest point on segment
- discriminant = 0;
- }
- var t = -dot + Mathf.Sqrt(discriminant);
- // Note: the default value of 1 is important for the PathInterpolator.MoveToCircleIntersection2D
- // method to work properly. Maybe find some better abstraction where this default value is more obvious.
- return segmentLength > 0.00001f ? t / segmentLength : 1f;
- }
- /** Normalize vector and also return the magnitude.
- * This is more efficient than calculating the magnitude and normalizing separately
- */
- public static Vector3 Normalize (Vector3 v, out float magnitude) {
- magnitude = v.magnitude;
- // This is the same constant that Unity uses
- if (magnitude > 1E-05f) {
- return v / magnitude;
- } else {
- return Vector3.zero;
- }
- }
- /** Normalize vector and also return the magnitude.
- * This is more efficient than calculating the magnitude and normalizing separately
- */
- public static Vector2 Normalize (Vector2 v, out float magnitude) {
- magnitude = v.magnitude;
- // This is the same constant that Unity uses
- if (magnitude > 1E-05f) {
- return v / magnitude;
- } else {
- return Vector2.zero;
- }
- }
- /* Clamp magnitude along the X and Z axes.
- * The y component will not be changed.
- */
- public static Vector3 ClampMagnitudeXZ (Vector3 v, float maxMagnitude) {
- float squaredMagnitudeXZ = v.x*v.x + v.z*v.z;
- if (squaredMagnitudeXZ > maxMagnitude*maxMagnitude && maxMagnitude > 0) {
- var factor = maxMagnitude / Mathf.Sqrt(squaredMagnitudeXZ);
- v.x *= factor;
- v.z *= factor;
- }
- return v;
- }
- /* Magnitude in the XZ plane */
- public static float MagnitudeXZ (Vector3 v) {
- return Mathf.Sqrt(v.x*v.x + v.z*v.z);
- }
- }
- /** Utility functions for working with numbers and strings.
- * \ingroup utils
- * \see Polygon
- * \see VectorMath
- */
- public static class AstarMath {
- /** Returns the closest point on the line. The line is treated as infinite.
- * \see NearestPointStrict
- */
- [System.Obsolete("Use VectorMath.ClosestPointOnLine instead")]
- public static Vector3 NearestPoint (Vector3 lineStart, Vector3 lineEnd, Vector3 point) {
- return VectorMath.ClosestPointOnLine(lineStart, lineEnd, point);
- }
- [System.Obsolete("Use VectorMath.ClosestPointOnLineFactor instead")]
- public static float NearestPointFactor (Vector3 lineStart, Vector3 lineEnd, Vector3 point) {
- return VectorMath.ClosestPointOnLineFactor(lineStart, lineEnd, point);
- }
- /** Factor of the nearest point on the segment.
- * Returned value is in the range [0,1] if the point lies on the segment otherwise it just lies on the line.
- * The closest point can be got by (end-start)*factor + start;
- */
- [System.Obsolete("Use VectorMath.ClosestPointOnLineFactor instead")]
- public static float NearestPointFactor (Int3 lineStart, Int3 lineEnd, Int3 point) {
- return VectorMath.ClosestPointOnLineFactor(lineStart, lineEnd, point);
- }
- /** Factor of the nearest point on the segment.
- * Returned value is in the range [0,1] if the point lies on the segment otherwise it just lies on the line.
- * The closest point can be got by (end-start)*factor + start;
- */
- [System.Obsolete("Use VectorMath.ClosestPointOnLineFactor instead")]
- public static float NearestPointFactor (Int2 lineStart, Int2 lineEnd, Int2 point) {
- return VectorMath.ClosestPointOnLineFactor(lineStart, lineEnd, point);
- }
- /** Returns the closest point on the line segment. The line is NOT treated as infinite.
- * \see NearestPoint
- */
- [System.Obsolete("Use VectorMath.ClosestPointOnSegment instead")]
- public static Vector3 NearestPointStrict (Vector3 lineStart, Vector3 lineEnd, Vector3 point) {
- return VectorMath.ClosestPointOnSegment(lineStart, lineEnd, point);
- }
- /** Returns the closest point on the line segment on the XZ plane. The line is NOT treated as infinite.
- * \see NearestPoint
- */
- [System.Obsolete("Use VectorMath.ClosestPointOnSegmentXZ instead")]
- public static Vector3 NearestPointStrictXZ (Vector3 lineStart, Vector3 lineEnd, Vector3 point) {
- return VectorMath.ClosestPointOnSegmentXZ(lineStart, lineEnd, point);
- }
- /** Returns the approximate shortest squared distance between x,z and the line p-q.
- * The line is considered infinite.
- * This function is not entirely exact, but it is about twice as fast as DistancePointSegment2.
- */
- [System.Obsolete("Use VectorMath.SqrDistancePointSegmentApproximate instead")]
- public static float DistancePointSegment (int x, int z, int px, int pz, int qx, int qz) {
- return VectorMath.SqrDistancePointSegmentApproximate(x, z, px, pz, qx, qz);
- }
- /** Returns the approximate shortest squared distance between x,z and the line p-q.
- * The line is considered infinite.
- * This function is not entirely exact, but it is about twice as fast as DistancePointSegment2.
- */
- [System.Obsolete("Use VectorMath.SqrDistancePointSegmentApproximate instead")]
- public static float DistancePointSegment (Int3 a, Int3 b, Int3 p) {
- return VectorMath.SqrDistancePointSegmentApproximate(a, b, p);
- }
- /** Returns the squared distance between c and the line a-b. The line is not considered infinite. */
- [System.Obsolete("Use VectorMath.SqrDistancePointSegment instead")]
- public static float DistancePointSegmentStrict (Vector3 a, Vector3 b, Vector3 p) {
- return VectorMath.SqrDistancePointSegment(a, b, p);
- }
- /** Returns a point on a cubic bezier curve. \a t is clamped between 0 and 1 */
- [System.Obsolete("Use AstarSplines.CubicBezier instead")]
- public static Vector3 CubicBezier (Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3, float t) {
- return AstarSplines.CubicBezier(p0, p1, p2, p3, t);
- }
- /** Maps a value between startMin and startMax to be between 0 and 1 */
- [System.Obsolete("Use Mathf.InverseLerp instead")]
- public static float MapTo (float startMin, float startMax, float value) {
- return Mathf.InverseLerp(startMin, startMax, value);
- }
- /** Maps a value between startMin and startMax to be between targetMin and targetMax */
- public static float MapTo (float startMin, float startMax, float targetMin, float targetMax, float value) {
- return Mathf.Lerp(targetMin, targetMax, Mathf.InverseLerp(startMin, startMax, value));
- }
- /** Returns a nicely formatted string for the number of bytes (KiB, MiB, GiB etc). Uses decimal names (KB, Mb - 1000) but calculates using binary values (KiB, MiB - 1024) */
- public static string FormatBytesBinary (int bytes) {
- double sign = bytes >= 0 ? 1D : -1D;
- bytes = Mathf.Abs(bytes);
- if (bytes < 1024) {
- return (bytes*sign)+" bytes";
- } else if (bytes < 1024*1024) {
- return ((bytes/1024D)*sign).ToString("0.0") + " KiB";
- } else if (bytes < 1024*1024*1024) {
- return ((bytes/(1024D*1024D))*sign).ToString("0.0") +" MiB";
- }
- return ((bytes/(1024D*1024D*1024D))*sign).ToString("0.0") +" GiB";
- }
- }
- /** Utility functions for working with polygons, lines, and other vector math.
- * All functions which accepts Vector3s but work in 2D space uses the XZ space if nothing else is said.
- *
- * \version A lot of functions in this class have been moved to the VectorMath class
- * the names have changed slightly and everything now consistently assumes a left handed
- * coordinate system now instead of sometimes using a left handed one and sometimes
- * using a right handed one. This is why the 'Left' methods redirect to methods
- * named 'Right'. The functionality is exactly the same.
- *
- * \ingroup utils
- */
- public static class Polygon {
- /** Returns if the triangle \a ABC contains the point \a p in XZ space.
- * The triangle vertices are assumed to be laid out in clockwise order.
- */
- public static bool ContainsPointXZ (Vector3 a, Vector3 b, Vector3 c, Vector3 p) {
- return VectorMath.IsClockwiseMarginXZ(a, b, p) && VectorMath.IsClockwiseMarginXZ(b, c, p) && VectorMath.IsClockwiseMarginXZ(c, a, p);
- }
- /** Returns if the triangle \a ABC contains the point \a p.
- * The triangle vertices are assumed to be laid out in clockwise order.
- */
- public static bool ContainsPointXZ (Int3 a, Int3 b, Int3 c, Int3 p) {
- return VectorMath.IsClockwiseOrColinearXZ(a, b, p) && VectorMath.IsClockwiseOrColinearXZ(b, c, p) && VectorMath.IsClockwiseOrColinearXZ(c, a, p);
- }
- /** Returns if the triangle \a ABC contains the point \a p.
- * The triangle vertices are assumed to be laid out in clockwise order.
- */
- public static bool ContainsPoint (Int2 a, Int2 b, Int2 c, Int2 p) {
- return VectorMath.IsClockwiseOrColinear(a, b, p) && VectorMath.IsClockwiseOrColinear(b, c, p) && VectorMath.IsClockwiseOrColinear(c, a, p);
- }
- /** Checks if \a p is inside the polygon.
- * \author http://unifycommunity.com/wiki/index.php?title=PolyContainsPoint (Eric5h5)
- */
- public static bool ContainsPoint (Vector2[] polyPoints, Vector2 p) {
- int j = polyPoints.Length-1;
- bool inside = false;
- for (int i = 0; i < polyPoints.Length; j = i++) {
- if (((polyPoints[i].y <= p.y && p.y < polyPoints[j].y) || (polyPoints[j].y <= p.y && p.y < polyPoints[i].y)) &&
- (p.x < (polyPoints[j].x - polyPoints[i].x) * (p.y - polyPoints[i].y) / (polyPoints[j].y - polyPoints[i].y) + polyPoints[i].x))
- inside = !inside;
- }
- return inside;
- }
- /** Checks if \a p is inside the polygon (XZ space).
- * \author http://unifycommunity.com/wiki/index.php?title=PolyContainsPoint (Eric5h5)
- */
- public static bool ContainsPointXZ (Vector3[] polyPoints, Vector3 p) {
- int j = polyPoints.Length-1;
- bool inside = false;
- for (int i = 0; i < polyPoints.Length; j = i++) {
- if (((polyPoints[i].z <= p.z && p.z < polyPoints[j].z) || (polyPoints[j].z <= p.z && p.z < polyPoints[i].z)) &&
- (p.x < (polyPoints[j].x - polyPoints[i].x) * (p.z - polyPoints[i].z) / (polyPoints[j].z - polyPoints[i].z) + polyPoints[i].x))
- inside = !inside;
- }
- return inside;
- }
- /** Sample Y coordinate of the triangle (p1, p2, p3) at the point p in XZ space.
- * The y coordinate of \a p is ignored.
- *
- * \returns The interpolated y coordinate unless the triangle is degenerate in which case a DivisionByZeroException will be thrown
- *
- * \see https://en.wikipedia.org/wiki/Barycentric_coordinate_system
- */
- public static int SampleYCoordinateInTriangle (Int3 p1, Int3 p2, Int3 p3, Int3 p) {
- double det = ((double)(p2.z - p3.z)) * (p1.x - p3.x) + ((double)(p3.x - p2.x)) * (p1.z - p3.z);
- double lambda1 = ((((double)(p2.z - p3.z)) * (p.x - p3.x) + ((double)(p3.x - p2.x)) * (p.z - p3.z)) / det);
- double lambda2 = ((((double)(p3.z - p1.z)) * (p.x - p3.x) + ((double)(p1.x - p3.x)) * (p.z - p3.z)) / det);
- return (int)Math.Round(lambda1 * p1.y + lambda2 * p2.y + (1 - lambda1 - lambda2) * p3.y);
- }
- /** Returns if \a p lies on the left side of the line \a a - \a b. Uses XZ space.
- * Does not return true if the points are colinear.
- * \deprecated Use VectorMath.RightXZ instead. Note that it now uses a left handed coordinate system (same as Unity)
- */
- [System.Obsolete("Use VectorMath.RightXZ instead. Note that it now uses a left handed coordinate system (same as Unity)")]
- public static bool LeftNotColinear (Vector3 a, Vector3 b, Vector3 p) {
- return VectorMath.RightXZ(a, b, p);
- }
- /** Returns if \a p lies on the left side of the line \a a - \a b. Uses XZ space. Also returns true if the points are colinear
- * \deprecated Use VectorMath.RightOrColinearXZ instead. Note that it now uses a left handed coordinate system (same as Unity)
- */
- [System.Obsolete("Use VectorMath.RightOrColinearXZ instead. Note that it now uses a left handed coordinate system (same as Unity)")]
- public static bool Left (Vector3 a, Vector3 b, Vector3 p) {
- return VectorMath.RightOrColinearXZ(a, b, p);
- }
- /** Returns if \a p lies on the left side of the line \a a - \a b. Also returns true if the points are colinear
- * \deprecated Use VectorMath.RightOrColinear instead. Note that it now uses a left handed coordinate system (same as Unity)
- */
- [System.Obsolete("Use VectorMath.RightOrColinear instead. Note that it now uses a left handed coordinate system (same as Unity)")]
- public static bool Left (Vector2 a, Vector2 b, Vector2 p) {
- return VectorMath.RightOrColinear(a, b, p);
- }
- /** Returns if \a p lies on the left side of the line \a a - \a b. Uses XZ space. Also returns true if the points are colinear
- * \deprecated Use VectorMath.RightOrColinearXZ instead. Note that it now uses a left handed coordinate system (same as Unity)
- */
- [System.Obsolete("Use VectorMath.RightOrColinearXZ instead. Note that it now uses a left handed coordinate system (same as Unity)")]
- public static bool Left (Int3 a, Int3 b, Int3 p) {
- return VectorMath.RightOrColinearXZ(a, b, p);
- }
- /** Returns if \a p lies on the left side of the line \a a - \a b. Uses XZ space.
- * \deprecated Use VectorMath.RightXZ instead. Note that it now uses a left handed coordinate system (same as Unity)
- */
- [System.Obsolete("Use VectorMath.RightXZ instead. Note that it now uses a left handed coordinate system (same as Unity)")]
- public static bool LeftNotColinear (Int3 a, Int3 b, Int3 p) {
- return VectorMath.RightXZ(a, b, p);
- }
- /** Returns if \a p lies on the left side of the line \a a - \a b. Also returns true if the points are colinear
- * \deprecated Use VectorMath.RightOrColinear instead. Note that it now uses a left handed coordinate system (same as Unity)
- */
- [System.Obsolete("Use VectorMath.RightOrColinear instead. Note that it now uses a left handed coordinate system (same as Unity)")]
- public static bool Left (Int2 a, Int2 b, Int2 p) {
- return VectorMath.RightOrColinear(a, b, p);
- }
- /** Returns if the points a in a clockwise order.
- * Will return true even if the points are colinear or very slightly counter-clockwise
- * (if the signed area of the triangle formed by the points has an area less than or equals to float.Epsilon)
- * \deprecated Use VectorMath.IsClockwiseMarginXZ instead
- */
- [System.Obsolete("Use VectorMath.IsClockwiseMarginXZ instead")]
- public static bool IsClockwiseMargin (Vector3 a, Vector3 b, Vector3 c) {
- return VectorMath.IsClockwiseMarginXZ(a, b, c);
- }
- /** Returns if the points a in a clockwise order
- * \deprecated Use VectorMath.IsClockwiseXZ instead
- */
- [System.Obsolete("Use VectorMath.IsClockwiseXZ instead")]
- public static bool IsClockwise (Vector3 a, Vector3 b, Vector3 c) {
- return VectorMath.IsClockwiseXZ(a, b, c);
- }
- /** Returns if the points a in a clockwise order
- * \deprecated Use VectorMath.IsClockwiseXZ instead
- */
- [System.Obsolete("Use VectorMath.IsClockwiseXZ instead")]
- public static bool IsClockwise (Int3 a, Int3 b, Int3 c) {
- return VectorMath.IsClockwiseXZ(a, b, c);
- }
- /** Returns true if the points a in a clockwise order or if they are colinear
- * \deprecated Use VectorMath.IsClockwiseOrColinearXZ instead
- */
- [System.Obsolete("Use VectorMath.IsClockwiseOrColinearXZ instead")]
- public static bool IsClockwiseMargin (Int3 a, Int3 b, Int3 c) {
- return VectorMath.IsClockwiseOrColinearXZ(a, b, c);
- }
- /** Returns true if the points a in a clockwise order or if they are colinear
- * \deprecated Use VectorMath.IsClockwiseOrColinear instead
- */
- [System.Obsolete("Use VectorMath.IsClockwiseOrColinear instead")]
- public static bool IsClockwiseMargin (Int2 a, Int2 b, Int2 c) {
- return VectorMath.IsClockwiseOrColinear(a, b, c);
- }
- /** Returns if the points are colinear (lie on a straight line)
- * \deprecated Use VectorMath.IsColinearXZ instead
- */
- [System.Obsolete("Use VectorMath.IsColinearXZ instead")]
- public static bool IsColinear (Int3 a, Int3 b, Int3 c) {
- return VectorMath.IsColinearXZ(a, b, c);
- }
- /** Returns if the points are colinear (lie on a straight line)
- * \deprecated Use VectorMath.IsColinearAlmostXZ instead
- */
- [System.Obsolete("Use VectorMath.IsColinearAlmostXZ instead")]
- public static bool IsColinearAlmost (Int3 a, Int3 b, Int3 c) {
- return VectorMath.IsColinearAlmostXZ(a, b, c);
- }
- /** Returns if the points are colinear (lie on a straight line)
- * \deprecated Use VectorMath.IsColinearXZ instead
- */
- [System.Obsolete("Use VectorMath.IsColinearXZ instead")]
- public static bool IsColinear (Vector3 a, Vector3 b, Vector3 c) {
- return VectorMath.IsColinearXZ(a, b, c);
- }
- /** Returns if the line segment \a a2 - \a b2 intersects the infinite line \a a - \a b. a-b is infinite, a2-b2 is not infinite */
- [System.Obsolete("Marked for removal since it is not used by any part of the A* Pathfinding Project")]
- public static bool IntersectsUnclamped (Vector3 a, Vector3 b, Vector3 a2, Vector3 b2) {
- return VectorMath.RightOrColinearXZ(a, b, a2) != VectorMath.RightOrColinearXZ(a, b, b2);
- }
- /** Returns if the line segment \a a2 - \a b2 intersects the line segment \a a - \a b.
- * If only the endpoints coincide, the result is undefined (may be true or false).
- *
- * \deprecated Use VectorMath.SegmentsIntersect instead */
- [System.Obsolete("Use VectorMath.SegmentsIntersect instead")]
- public static bool Intersects (Int2 start1, Int2 end1, Int2 start2, Int2 end2) {
- return VectorMath.SegmentsIntersect(start1, end1, start2, end2);
- }
- /** Returns if the line segment \a a2 - \a b2 intersects the line segment \a a - \a b.
- * If only the endpoints coincide, the result is undefined (may be true or false).
- *
- * \note XZ space
- *
- * \deprecated Use VectorMath.SegmentsIntersectXZ instead */
- [System.Obsolete("Use VectorMath.SegmentsIntersectXZ instead")]
- public static bool Intersects (Int3 start1, Int3 end1, Int3 start2, Int3 end2) {
- return VectorMath.SegmentsIntersectXZ(start1, end1, start2, end2);
- }
- /** Returns if the two line segments intersects. The lines are NOT treated as infinite (just for clarification)
- * \see IntersectionPoint
- *
- * \deprecated Use VectorMath.SegmentsIntersectXZ instead */
- [System.Obsolete("Use VectorMath.SegmentsIntersectXZ instead")]
- public static bool Intersects (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2) {
- return VectorMath.SegmentsIntersectXZ(start1, end1, start2, end2);
- }
- /** Intersection point between two infinite lines.
- * Lines are treated as infinite. If the lines are parallel 'start1' will be returned. Intersections are calculated on the XZ plane.
- *
- * \deprecated Use VectorMath.LineDirIntersectionPointXZ instead */
- [System.Obsolete("Use VectorMath.LineDirIntersectionPointXZ instead")]
- public static Vector3 IntersectionPointOptimized (Vector3 start1, Vector3 dir1, Vector3 start2, Vector3 dir2) {
- return VectorMath.LineDirIntersectionPointXZ(start1, dir1, start2, dir2);
- }
- /** Intersection point between two infinite lines.
- * Lines are treated as infinite. If the lines are parallel 'start1' will be returned. Intersections are calculated on the XZ plane.
- *
- * \deprecated Use VectorMath.LineDirIntersectionPointXZ instead */
- [System.Obsolete("Use VectorMath.LineDirIntersectionPointXZ instead")]
- public static Vector3 IntersectionPointOptimized (Vector3 start1, Vector3 dir1, Vector3 start2, Vector3 dir2, out bool intersects) {
- return VectorMath.LineDirIntersectionPointXZ(start1, dir1, start2, dir2, out intersects);
- }
- /** Returns if the ray (start1, end1) intersects the segment (start2, end2).
- * false is returned if the lines are parallel.
- * Only the XZ coordinates are used.
- * \todo Double check that this actually works
- *
- * \deprecated Use VectorMath.RaySegmentIntersectXZ instead */
- [System.Obsolete("Use VectorMath.RaySegmentIntersectXZ instead")]
- public static bool IntersectionFactorRaySegment (Int3 start1, Int3 end1, Int3 start2, Int3 end2) {
- return VectorMath.RaySegmentIntersectXZ(start1, end1, start2, end2);
- }
- /** Returns the intersection factors for line 1 and line 2. The intersection factors is a distance along the line \a start - \a end where the other line intersects it.\n
- * \code intersectionPoint = start1 + factor1 * (end1-start1) \endcode
- * \code intersectionPoint2 = start2 + factor2 * (end2-start2) \endcode
- * Lines are treated as infinite.\n
- * false is returned if the lines are parallel and true if they are not.
- * Only the XZ coordinates are used.
- *
- * \deprecated Use VectorMath.LineIntersectionFactorXZ instead */
- [System.Obsolete("Use VectorMath.LineIntersectionFactorXZ instead")]
- public static bool IntersectionFactor (Int3 start1, Int3 end1, Int3 start2, Int3 end2, out float factor1, out float factor2) {
- return VectorMath.LineIntersectionFactorXZ(start1, end1, start2, end2, out factor1, out factor2);
- }
- /** Returns the intersection factors for line 1 and line 2. The intersection factors is a distance along the line \a start - \a end where the other line intersects it.\n
- * \code intersectionPoint = start1 + factor1 * (end1-start1) \endcode
- * \code intersectionPoint2 = start2 + factor2 * (end2-start2) \endcode
- * Lines are treated as infinite.\n
- * false is returned if the lines are parallel and true if they are not.
- * Only the XZ coordinates are used.
- *
- * \deprecated Use VectorMath.LineIntersectionFactorXZ instead */
- [System.Obsolete("Use VectorMath.LineIntersectionFactorXZ instead")]
- public static bool IntersectionFactor (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2, out float factor1, out float factor2) {
- return VectorMath.LineIntersectionFactorXZ(start1, end1, start2, end2, out factor1, out factor2);
- }
- /** Returns the intersection factor for line 1 with ray 2.
- * The intersection factors is a factor distance along the line \a start - \a end where the other line intersects it.\n
- * \code intersectionPoint = start1 + factor * (end1-start1) \endcode
- * Lines are treated as infinite.\n
- *
- * The second "line" is treated as a ray, meaning only matches on start2 or forwards towards end2 (and beyond) will be returned
- * If the point lies on the wrong side of the ray start, Nan will be returned.
- *
- * NaN is returned if the lines are parallel. *
- * \deprecated Use VectorMath.LineRayIntersectionFactorXZ instead */
- [System.Obsolete("Use VectorMath.LineRayIntersectionFactorXZ instead")]
- public static float IntersectionFactorRay (Int3 start1, Int3 end1, Int3 start2, Int3 end2) {
- return VectorMath.LineRayIntersectionFactorXZ(start1, end1, start2, end2);
- }
- /** Returns the intersection factor for line 1 with line 2.
- * The intersection factor is a distance along the line \a start1 - \a end1 where the line \a start2 - \a end2 intersects it.\n
- * \code intersectionPoint = start1 + intersectionFactor * (end1-start1) \endcode.
- * Lines are treated as infinite.\n
- * -1 is returned if the lines are parallel (note that this is a valid return value if they are not parallel too) *
- * \deprecated Use VectorMath.LineIntersectionFactorXZ instead */
- [System.Obsolete("Use VectorMath.LineIntersectionFactorXZ instead")]
- public static float IntersectionFactor (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2) {
- return VectorMath.LineIntersectionFactorXZ(start1, end1, start2, end2);
- }
- /** Returns the intersection point between the two lines. Lines are treated as infinite. \a start1 is returned if the lines are parallel
- * \deprecated Use VectorMath.LineIntersectionPointXZ instead */
- [System.Obsolete("Use VectorMath.LineIntersectionPointXZ instead")]
- public static Vector3 IntersectionPoint (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2) {
- return VectorMath.LineIntersectionPointXZ(start1, end1, start2, end2);
- }
- /** Returns the intersection point between the two lines. Lines are treated as infinite. \a start1 is returned if the lines are parallel
- * \deprecated Use VectorMath.LineIntersectionPointXZ instead */
- [System.Obsolete("Use VectorMath.LineIntersectionPointXZ instead")]
- public static Vector3 IntersectionPoint (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2, out bool intersects) {
- return VectorMath.LineIntersectionPointXZ(start1, end1, start2, end2, out intersects);
- }
- /** Returns the intersection point between the two lines. Lines are treated as infinite. \a start1 is returned if the lines are parallel
- * \deprecated Use VectorMath.LineIntersectionPoint instead */
- [System.Obsolete("Use VectorMath.LineIntersectionPoint instead")]
- public static Vector2 IntersectionPoint (Vector2 start1, Vector2 end1, Vector2 start2, Vector2 end2) {
- return VectorMath.LineIntersectionPoint(start1, end1, start2, end2);
- }
- /** Returns the intersection point between the two lines. Lines are treated as infinite. \a start1 is returned if the lines are parallel
- * \deprecated Use VectorMath.LineIntersectionPoint instead */
- [System.Obsolete("Use VectorMath.LineIntersectionPoint instead")]
- public static Vector2 IntersectionPoint (Vector2 start1, Vector2 end1, Vector2 start2, Vector2 end2, out bool intersects) {
- return VectorMath.LineIntersectionPoint(start1, end1, start2, end2, out intersects);
- }
- /** Returns the intersection point between the two line segments in XZ space.
- * Lines are NOT treated as infinite. \a start1 is returned if the line segments do not intersect
- * The point will be returned along the line [start1, end1] (this matters only for the y coordinate).
- *
- * \deprecated Use VectorMath.SegmentIntersectionPointXZ instead */
- [System.Obsolete("Use VectorMath.SegmentIntersectionPointXZ instead")]
- public static Vector3 SegmentIntersectionPoint (Vector3 start1, Vector3 end1, Vector3 start2, Vector3 end2, out bool intersects) {
- return VectorMath.SegmentIntersectionPointXZ(start1, end1, start2, end2, out intersects);
- }
- /** Calculates convex hull in XZ space for the points.
- * Implemented using the very simple Gift Wrapping Algorithm
- * which has a complexity of O(nh) where \a n is the number of points and \a h is the number of points on the hull,
- * so it is in the worst case quadratic.
- *
- * \deprecated Use ConvexHullXZ instead
- */
- [System.Obsolete("Use ConvexHullXZ instead")]
- public static Vector3[] ConvexHull (Vector3[] points) {
- return ConvexHullXZ(points);
- }
- /** Calculates convex hull in XZ space for the points.
- * Implemented using the very simple Gift Wrapping Algorithm
- * which has a complexity of O(nh) where \a n is the number of points and \a h is the number of points on the hull,
- * so it is in the worst case quadratic.
- */
- public static Vector3[] ConvexHullXZ (Vector3[] points) {
- if (points.Length == 0) return new Vector3[0];
- var hull = ListPool<Vector3>.Claim();
- int pointOnHull = 0;
- for (int i = 1; i < points.Length; i++) if (points[i].x < points[pointOnHull].x) pointOnHull = i;
- int startpoint = pointOnHull;
- int counter = 0;
- do {
- hull.Add(points[pointOnHull]);
- int endpoint = 0;
- for (int i = 0; i < points.Length; i++) if (endpoint == pointOnHull || !VectorMath.RightOrColinearXZ(points[pointOnHull], points[endpoint], points[i])) endpoint = i;
- pointOnHull = endpoint;
- counter++;
- if (counter > 10000) {
- #if !SERVER
- UnityEngine.Debug.LogWarning("Infinite Loop in Convex Hull Calculation");
- #endif
- break;
- }
- } while (pointOnHull != startpoint);
- var result = hull.ToArray();
- // Return to pool
- ListPool<Vector3>.Release(hull);
- return result;
- }
- /** Closest point on the triangle \a abc to the point \a p.
- * \see 'Real Time Collision Detection' by Christer Ericson, chapter 5.1, page 141
- */
- public static Vector2 ClosestPointOnTriangle (Vector2 a, Vector2 b, Vector2 c, Vector2 p) {
- // Check if p is in vertex region outside A
- var ab = b - a;
- var ac = c - a;
- var ap = p - a;
- var d1 = Vector2.Dot(ab, ap);
- var d2 = Vector2.Dot(ac, ap);
- // Barycentric coordinates (1,0,0)
- if (d1 <= 0 && d2 <= 0) {
- return a;
- }
- // Check if p is in vertex region outside B
- var bp = p - b;
- var d3 = Vector2.Dot(ab, bp);
- var d4 = Vector2.Dot(ac, bp);
- // Barycentric coordinates (0,1,0)
- if (d3 >= 0 && d4 <= d3) {
- return b;
- }
- // Check if p is in edge region outside AB, if so return a projection of p onto AB
- if (d1 >= 0 && d3 <= 0) {
- var vc = d1 * d4 - d3 * d2;
- if (vc <= 0) {
- // Barycentric coordinates (1-v, v, 0)
- var v = d1 / (d1 - d3);
- return a + ab*v;
- }
- }
- // Check if p is in vertex region outside C
- var cp = p - c;
- var d5 = Vector2.Dot(ab, cp);
- var d6 = Vector2.Dot(ac, cp);
- // Barycentric coordinates (0,0,1)
- if (d6 >= 0 && d5 <= d6) {
- return c;
- }
- // Check if p is in edge region of AC, if so return a projection of p onto AC
- if (d2 >= 0 && d6 <= 0) {
- var vb = d5 * d2 - d1 * d6;
- if (vb <= 0) {
- // Barycentric coordinates (1-v, 0, v)
- var v = d2 / (d2 - d6);
- return a + ac*v;
- }
- }
- // Check if p is in edge region of BC, if so return projection of p onto BC
- if ((d4 - d3) >= 0 && (d5 - d6) >= 0) {
- var va = d3 * d6 - d5 * d4;
- if (va <= 0) {
- var v = (d4 - d3) / ((d4 - d3) + (d5 - d6));
- return b + (c - b) * v;
- }
- }
- return p;
- }
- /** Closest point on the triangle \a abc to the point \a p when seen from above.
- * \see 'Real Time Collision Detection' by Christer Ericson, chapter 5.1, page 141
- */
- public static Vector3 ClosestPointOnTriangleXZ (Vector3 a, Vector3 b, Vector3 c, Vector3 p) {
- // Check if p is in vertex region outside A
- var ab = new Vector2(b.x - a.x, b.z - a.z);
- var ac = new Vector2(c.x - a.x, c.z - a.z);
- var ap = new Vector2(p.x - a.x, p.z - a.z);
- var d1 = Vector2.Dot(ab, ap);
- var d2 = Vector2.Dot(ac, ap);
- // Barycentric coordinates (1,0,0)
- if (d1 <= 0 && d2 <= 0) {
- return a;
- }
- // Check if p is in vertex region outside B
- var bp = new Vector2(p.x - b.x, p.z - b.z);
- var d3 = Vector2.Dot(ab, bp);
- var d4 = Vector2.Dot(ac, bp);
- // Barycentric coordinates (0,1,0)
- if (d3 >= 0 && d4 <= d3) {
- return b;
- }
- // Check if p is in edge region outside AB, if so return a projection of p onto AB
- var vc = d1 * d4 - d3 * d2;
- if (d1 >= 0 && d3 <= 0 && vc <= 0) {
- // Barycentric coordinates (1-v, v, 0)
- var v = d1 / (d1 - d3);
- return (1-v)*a + v*b;
- }
- // Check if p is in vertex region outside C
- var cp = new Vector2(p.x - c.x, p.z - c.z);
- var d5 = Vector2.Dot(ab, cp);
- var d6 = Vector2.Dot(ac, cp);
- // Barycentric coordinates (0,0,1)
- if (d6 >= 0 && d5 <= d6) {
- return c;
- }
- // Check if p is in edge region of AC, if so return a projection of p onto AC
- var vb = d5 * d2 - d1 * d6;
- if (d2 >= 0 && d6 <= 0 && vb <= 0) {
- // Barycentric coordinates (1-v, 0, v)
- var v = d2 / (d2 - d6);
- return (1-v)*a + v*c;
- }
- // Check if p is in edge region of BC, if so return projection of p onto BC
- var va = d3 * d6 - d5 * d4;
- if ((d4 - d3) >= 0 && (d5 - d6) >= 0 && va <= 0) {
- var v = (d4 - d3) / ((d4 - d3) + (d5 - d6));
- return b + (c - b) * v;
- } else {
- // P is inside the face region. Compute the point using its barycentric coordinates (u, v, w)
- // Note that the x and z coordinates will be exactly the same as P's x and z coordinates
- var denom = 1f / (va + vb + vc);
- var v = vb * denom;
- var w = vc * denom;
- return new Vector3(p.x, (1 - v - w)*a.y + v*b.y + w*c.y, p.z);
- }
- }
- /** Closest point on the triangle \a abc to the point \a p.
- * \see 'Real Time Collision Detection' by Christer Ericson, chapter 5.1, page 141
- */
- public static Vector3 ClosestPointOnTriangle (Vector3 a, Vector3 b, Vector3 c, Vector3 p) {
- // Check if p is in vertex region outside A
- var ab = b - a;
- var ac = c - a;
- var ap = p - a;
- var d1 = Vector3.Dot(ab, ap);
- var d2 = Vector3.Dot(ac, ap);
- // Barycentric coordinates (1,0,0)
- if (d1 <= 0 && d2 <= 0)
- return a;
- // Check if p is in vertex region outside B
- var bp = p - b;
- var d3 = Vector3.Dot(ab, bp);
- var d4 = Vector3.Dot(ac, bp);
- // Barycentric coordinates (0,1,0)
- if (d3 >= 0 && d4 <= d3)
- return b;
- // Check if p is in edge region outside AB, if so return a projection of p onto AB
- var vc = d1 * d4 - d3 * d2;
- if (d1 >= 0 && d3 <= 0 && vc <= 0) {
- // Barycentric coordinates (1-v, v, 0)
- var v = d1 / (d1 - d3);
- return a + ab * v;
- }
- // Check if p is in vertex region outside C
- var cp = p - c;
- var d5 = Vector3.Dot(ab, cp);
- var d6 = Vector3.Dot(ac, cp);
- // Barycentric coordinates (0,0,1)
- if (d6 >= 0 && d5 <= d6)
- return c;
- // Check if p is in edge region of AC, if so return a projection of p onto AC
- var vb = d5 * d2 - d1 * d6;
- if (d2 >= 0 && d6 <= 0 && vb <= 0) {
- // Barycentric coordinates (1-v, 0, v)
- var v = d2 / (d2 - d6);
- return a + ac * v;
- }
- // Check if p is in edge region of BC, if so return projection of p onto BC
- var va = d3 * d6 - d5 * d4;
- if ((d4 - d3) >= 0 && (d5 - d6) >= 0 && va <= 0) {
- var v = (d4 - d3) / ((d4 - d3) + (d5 - d6));
- return b + (c - b) * v;
- } else {
- // P is inside the face region. Compute the point using its barycentric coordinates (u, v, w)
- var denom = 1f / (va + vb + vc);
- var v = vb * denom;
- var w = vc * denom;
- // This is equal to: u*a + v*b + w*c, u = va*denom = 1 - v - w;
- return a + ab * v + ac * w;
- }
- }
- /** Get the 3D minimum distance between 2 segments
- * Input: two 3D line segments S1 and S2
- * \returns the shortest squared distance between S1 and S2
- *
- * \deprecated Use VectorMath.SqrDistanceSegmentSegment instead
- */
- [System.Obsolete("Use VectorMath.SqrDistanceSegmentSegment instead")]
- public static float DistanceSegmentSegment3D (Vector3 s1, Vector3 e1, Vector3 s2, Vector3 e2) {
- return VectorMath.SqrDistanceSegmentSegment(s1, e1, s2, e2);
- }
- /** Cached dictionary to avoid excessive allocations */
- static readonly Dictionary<Int3, int> cached_Int3_int_dict = new Dictionary<Int3, int>();
- /** Compress the mesh by removing duplicate vertices.
- *
- * \param vertices Vertices of the input mesh
- * \param triangles Triangles of the input mesh
- * \param outVertices Vertices of the output mesh.
- * \param outTriangles Triangles of the output mesh.
- *
- * Vertices that differ by only 1 along the y coordinate will also be merged together.
- * \warning This function is not threadsafe. It uses some cached structures to reduce allocations.
- */
- public static void CompressMesh (List<Int3> vertices, List<int> triangles, out Int3[] outVertices, out int[] outTriangles) {
- Dictionary<Int3, int> firstVerts = cached_Int3_int_dict;
- firstVerts.Clear();
- // Use cached array to reduce memory allocations
- int[] compressedPointers = ArrayPool<int>.Claim(vertices.Count);
- // Map positions to the first index they were encountered at
- int count = 0;
- for (int i = 0; i < vertices.Count; i++) {
- // Check if the vertex position has already been added
- // Also check one position up and one down because rounding errors can cause vertices
- // that should end up in the same position to be offset 1 unit from each other
- // TODO: Check along X and Z axes as well?
- int ind;
- if (!firstVerts.TryGetValue(vertices[i], out ind) && !firstVerts.TryGetValue(vertices[i] + new Int3(0, 1, 0), out ind) && !firstVerts.TryGetValue(vertices[i] + new Int3(0, -1, 0), out ind)) {
- firstVerts.Add(vertices[i], count);
- compressedPointers[i] = count;
- vertices[count] = vertices[i];
- count++;
- } else {
- compressedPointers[i] = ind;
- }
- }
- // Create the triangle array or reuse the existing buffer
- outTriangles = new int[triangles.Count];
- // Remap the triangles to the new compressed indices
- for (int i = 0; i < outTriangles.Length; i++) {
- outTriangles[i] = compressedPointers[triangles[i]];
- }
- // Create the vertex array or reuse the existing buffer
- outVertices = new Int3[count];
- for (int i = 0; i < count; i++)
- outVertices[i] = vertices[i];
- ArrayPool<int>.Release(ref compressedPointers);
- }
- /** Given a set of edges between vertices, follows those edges and returns them as chains and cycles.
- * \param outline outline[a] = b if there is an edge from \a a to \a b.
- * \param hasInEdge \a hasInEdge should contain \a b if outline[a] = b for any key \a a.
- * \param results Will be called once for each contour with the contour as a parameter as well as a boolean indicating if the contour is a cycle or a chain (see image).
- *
- * \shadowimage{grid_contour_compressed.png}
- */
- public static void TraceContours (Dictionary<int, int> outline, HashSet<int> hasInEdge, System.Action<List<int>, bool> results) {
- // Iterate through chains of the navmesh outline.
- // I.e segments of the outline that are not loops
- // we need to start these at the beginning of the chain.
- // Then iterate over all the loops of the outline.
- // Since they are loops, we can start at any point.
- var obstacleVertices = ListPool<int>.Claim();
- var outlineKeys = ListPool<int>.Claim();
- outlineKeys.AddRange(outline.Keys);
- for (int k = 0; k <= 1; k++) {
- bool cycles = k == 1;
- for (int i = 0; i < outlineKeys.Count; i++) {
- var startIndex = outlineKeys[i];
- // Chains (not cycles) need to start at the start of the chain
- // Cycles can start at any point
- if (!cycles && hasInEdge.Contains(startIndex)) {
- continue;
- }
- var index = startIndex;
- obstacleVertices.Clear();
- obstacleVertices.Add(index);
- while (outline.ContainsKey(index)) {
- var next = outline[index];
- outline.Remove(index);
- obstacleVertices.Add(next);
- // We traversed a full cycle
- if (next == startIndex) break;
- index = next;
- }
- if (obstacleVertices.Count > 1) {
- results(obstacleVertices, cycles);
- }
- }
- }
- ListPool<int>.Release(ref outlineKeys);
- ListPool<int>.Release(ref obstacleVertices);
- }
- /** Divides each segment in the list into \a subSegments segments and fills the result list with the new points */
- public static void Subdivide (List<Vector3> points, List<Vector3> result, int subSegments) {
- for (int i = 0; i < points.Count-1; i++)
- for (int j = 0; j < subSegments; j++)
- result.Add(Vector3.Lerp(points[i], points[i+1], j / (float)subSegments));
- result.Add(points[points.Count-1]);
- }
- }
- }
|