Quaternion.cs 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931
  1. using System;
  2. using System.Globalization;
  3. namespace UnityEngine
  4. {
  5. [Serializable]
  6. public struct Quaternion: IEquatable<Quaternion>
  7. {
  8. public static readonly Quaternion identity = new Quaternion(0.0f, 0.0f, 0.0f, 1f);
  9. public float w;
  10. public float x;
  11. public float y;
  12. public float z;
  13. public Quaternion(float x, float y, float z, float w)
  14. {
  15. this.x = x;
  16. this.y = y;
  17. this.z = z;
  18. this.w = w;
  19. }
  20. public Quaternion(float angle, Vector3 rkAxis)
  21. {
  22. float num1 = angle * 0.5f;
  23. float num2 = (float) Math.Sin((double) num1);
  24. float num3 = (float) Math.Cos((double) num1);
  25. this.x = rkAxis.x * num2;
  26. this.y = rkAxis.y * num2;
  27. this.z = rkAxis.z * num2;
  28. this.w = num3;
  29. }
  30. public Quaternion(Vector3 xaxis, Vector3 yaxis, Vector3 zaxis)
  31. {
  32. Matrix4x4 identityM = Matrix4x4.identity;
  33. identityM[0, 0] = xaxis.x;
  34. identityM[1, 0] = xaxis.y;
  35. identityM[2, 0] = xaxis.z;
  36. identityM[0, 1] = yaxis.x;
  37. identityM[1, 1] = yaxis.y;
  38. identityM[2, 1] = yaxis.z;
  39. identityM[0, 2] = zaxis.x;
  40. identityM[1, 2] = zaxis.y;
  41. identityM[2, 2] = zaxis.z;
  42. Quaternion.CreateFromRotationMatrix(ref identityM, out this);
  43. }
  44. public Quaternion(float yaw, float pitch, float roll)
  45. {
  46. float num1 = roll * 0.5f;
  47. float num2 = (float) Math.Sin((double) num1);
  48. float num3 = (float) Math.Cos((double) num1);
  49. float num4 = pitch * 0.5f;
  50. float num5 = (float) Math.Sin((double) num4);
  51. float num6 = (float) Math.Cos((double) num4);
  52. float num7 = yaw * 0.5f;
  53. float num8 = (float) Math.Sin((double) num7);
  54. float num9 = (float) Math.Cos((double) num7);
  55. this.x = (float) ((double) num9 * (double) num5 * (double) num3 + (double) num8 * (double) num6 * (double) num2);
  56. this.y = (float) ((double) num8 * (double) num6 * (double) num3 - (double) num9 * (double) num5 * (double) num2);
  57. this.z = (float) ((double) num9 * (double) num6 * (double) num2 - (double) num8 * (double) num5 * (double) num3);
  58. this.w = (float) ((double) num9 * (double) num6 * (double) num3 + (double) num8 * (double) num5 * (double) num2);
  59. }
  60. #if !SERVER
  61. public static implicit operator UnityEngine.Quaternion(Quaternion q)
  62. {
  63. return new UnityEngine.Quaternion(q.x, q.y, q.z, q.w);
  64. }
  65. public static implicit operator Quaternion(UnityEngine.Quaternion q)
  66. {
  67. return new Quaternion(q.x, q.y, q.z, q.w);
  68. }
  69. #endif
  70. public override string ToString()
  71. {
  72. CultureInfo currentCulture = CultureInfo.CurrentCulture;
  73. return string.Format((IFormatProvider) currentCulture, "({0}, {1}, {2}, {3})", (object) this.x.ToString((IFormatProvider) currentCulture),
  74. (object) this.y.ToString((IFormatProvider) currentCulture),
  75. (object) this.z.ToString((IFormatProvider) currentCulture),
  76. (object) this.w.ToString((IFormatProvider) currentCulture));
  77. }
  78. public bool Equals(Quaternion other)
  79. {
  80. if ((double) this.x == (double) other.x && (double) this.y == (double) other.y && (double) this.z == (double) other.z)
  81. return (double) this.w == (double) other.w;
  82. return false;
  83. }
  84. public override bool Equals(object obj)
  85. {
  86. bool flag = false;
  87. if (obj is Quaternion)
  88. flag = this.Equals((Quaternion) obj);
  89. return flag;
  90. }
  91. public override int GetHashCode()
  92. {
  93. return this.x.GetHashCode() + this.y.GetHashCode() + this.z.GetHashCode() + this.w.GetHashCode();
  94. }
  95. public float LengthSquared()
  96. {
  97. return (float) ((double) this.x * (double) this.x + (double) this.y * (double) this.y + (double) this.z * (double) this.z +
  98. (double) this.w * (double) this.w);
  99. }
  100. public float Length()
  101. {
  102. return (float) Math.Sqrt((double) this.x * (double) this.x + (double) this.y * (double) this.y + (double) this.z * (double) this.z +
  103. (double) this.w * (double) this.w);
  104. }
  105. public void Normalize()
  106. {
  107. float num = 1f / (float) Math.Sqrt((double) this.x * (double) this.x + (double) this.y * (double) this.y +
  108. (double) this.z * (double) this.z + (double) this.w * (double) this.w);
  109. this.x *= num;
  110. this.y *= num;
  111. this.z *= num;
  112. this.w *= num;
  113. }
  114. public static Quaternion Normalize(Quaternion quaternion)
  115. {
  116. float num = 1f / (float) Math.Sqrt((double) quaternion.x * (double) quaternion.x + (double) quaternion.y * (double) quaternion.y +
  117. (double) quaternion.z * (double) quaternion.z + (double) quaternion.w * (double) quaternion.w);
  118. Quaternion quaternion1;
  119. quaternion1.x = quaternion.x * num;
  120. quaternion1.y = quaternion.y * num;
  121. quaternion1.z = quaternion.z * num;
  122. quaternion1.w = quaternion.w * num;
  123. return quaternion1;
  124. }
  125. public static void Normalize(ref Quaternion quaternion, out Quaternion result)
  126. {
  127. float num = 1f / (float) Math.Sqrt((double) quaternion.x * (double) quaternion.x + (double) quaternion.y * (double) quaternion.y +
  128. (double) quaternion.z * (double) quaternion.z + (double) quaternion.w * (double) quaternion.w);
  129. result.x = quaternion.x * num;
  130. result.y = quaternion.y * num;
  131. result.z = quaternion.z * num;
  132. result.w = quaternion.w * num;
  133. }
  134. public static Quaternion Inverse(Quaternion quaternion)
  135. {
  136. float num = 1f / (float) ((double) quaternion.x * (double) quaternion.x + (double) quaternion.y * (double) quaternion.y +
  137. (double) quaternion.z * (double) quaternion.z + (double) quaternion.w * (double) quaternion.w);
  138. Quaternion quaternion1;
  139. quaternion1.x = -quaternion.x * num;
  140. quaternion1.y = -quaternion.y * num;
  141. quaternion1.z = -quaternion.z * num;
  142. quaternion1.w = quaternion.w * num;
  143. return quaternion1;
  144. }
  145. public static void Inverse(ref Quaternion quaternion, out Quaternion result)
  146. {
  147. float num = 1f / (float) ((double) quaternion.x * (double) quaternion.x + (double) quaternion.y * (double) quaternion.y +
  148. (double) quaternion.z * (double) quaternion.z + (double) quaternion.w * (double) quaternion.w);
  149. result.x = -quaternion.x * num;
  150. result.y = -quaternion.y * num;
  151. result.z = -quaternion.z * num;
  152. result.w = quaternion.w * num;
  153. }
  154. public static Quaternion CreateFromAxisAngle(Vector3 axis, float angle)
  155. {
  156. float num1 = angle * 0.5f;
  157. float num2 = (float) Math.Sin((double) num1);
  158. float num3 = (float) Math.Cos((double) num1);
  159. Quaternion quaternion;
  160. quaternion.x = axis.x * num2;
  161. quaternion.y = axis.y * num2;
  162. quaternion.z = axis.z * num2;
  163. quaternion.w = num3;
  164. return quaternion;
  165. }
  166. public static void CreateFromAxisAngle(ref Vector3 axis, float angle, out Quaternion result)
  167. {
  168. float num1 = angle * 0.5f;
  169. float num2 = (float) Math.Sin((double) num1);
  170. float num3 = (float) Math.Cos((double) num1);
  171. result.x = axis.x * num2;
  172. result.y = axis.y * num2;
  173. result.z = axis.z * num2;
  174. result.w = num3;
  175. }
  176. public static Quaternion CreateFromYawPitchRoll(float yaw, float pitch, float roll)
  177. {
  178. float num1 = roll * 0.5f;
  179. float num2 = (float) Math.Sin((double) num1);
  180. float num3 = (float) Math.Cos((double) num1);
  181. float num4 = pitch * 0.5f;
  182. float num5 = (float) Math.Sin((double) num4);
  183. float num6 = (float) Math.Cos((double) num4);
  184. float num7 = yaw * 0.5f;
  185. float num8 = (float) Math.Sin((double) num7);
  186. float num9 = (float) Math.Cos((double) num7);
  187. Quaternion quaternion;
  188. quaternion.x = (float) ((double) num9 * (double) num5 * (double) num3 + (double) num8 * (double) num6 * (double) num2);
  189. quaternion.y = (float) ((double) num8 * (double) num6 * (double) num3 - (double) num9 * (double) num5 * (double) num2);
  190. quaternion.z = (float) ((double) num9 * (double) num6 * (double) num2 - (double) num8 * (double) num5 * (double) num3);
  191. quaternion.w = (float) ((double) num9 * (double) num6 * (double) num3 + (double) num8 * (double) num5 * (double) num2);
  192. return quaternion;
  193. }
  194. public static Quaternion Euler(Vector3 eulerAngle)
  195. {
  196. //角度转弧度
  197. eulerAngle = Mathf.Deg2Rad(eulerAngle);
  198. float cX = (float)Math.Cos(eulerAngle.x / 2.0f);
  199. float sX = (float)Math.Sin(eulerAngle.x / 2.0f);
  200. float cY = (float)Math.Cos(eulerAngle.y / 2.0f);
  201. float sY = (float)Math.Sin(eulerAngle.y / 2.0f);
  202. float cZ = (float)Math.Cos(eulerAngle.z / 2.0f);
  203. float sZ = (float)Math.Sin(eulerAngle.z / 2.0f);
  204. Quaternion qX = new Quaternion(sX, 0, 0, cX);
  205. Quaternion qY = new Quaternion(0, sY, 0, cY);
  206. Quaternion qZ = new Quaternion(0, 0, sZ, cZ);
  207. Quaternion q = (qY * qX) * qZ;
  208. return q;
  209. }
  210. public static Quaternion Euler(float x, float y, float z)
  211. {
  212. return Euler(new Vector3(x, y, z));
  213. }
  214. private static Matrix3x3 QuaternionToMatrix(Quaternion q)
  215. {
  216. // Precalculate coordinate products
  217. float x = q.x * 2.0F;
  218. float y = q.y * 2.0F;
  219. float z = q.z * 2.0F;
  220. float xx = q.x * x;
  221. float yy = q.y * y;
  222. float zz = q.z * z;
  223. float xy = q.x * y;
  224. float xz = q.x * z;
  225. float yz = q.y * z;
  226. float wx = q.w * x;
  227. float wy = q.w * y;
  228. float wz = q.w * z;
  229. // Calculate 3x3 matrix from orthonormal basis
  230. Matrix3x3 m = Matrix3x3.identity;
  231. m.Data[0] = 1.0f - (yy + zz);
  232. m.Data[1] = xy + wz;
  233. m.Data[2] = xz - wy;
  234. m.Data[3] = xy - wz;
  235. m.Data[4] = 1.0f - (xx + zz);
  236. m.Data[5] = yz + wx;
  237. m.Data[6] = xz + wy;
  238. m.Data[7] = yz - wx;
  239. m.Data[8] = 1.0f - (xx + yy);
  240. return m;
  241. }
  242. public static Vector3 QuaternionToEuler(Quaternion quat)
  243. {
  244. Matrix3x3 m = QuaternionToMatrix(quat);
  245. Vector3 euler = MatrixToEuler(m);
  246. //弧度转角度
  247. return Mathf.Rad2Deg(euler);
  248. }
  249. private static Vector3 MakePositive(Vector3 euler)
  250. {
  251. const float negativeFlip = -0.0001F;
  252. const float positiveFlip = ((float)Math.PI * 2.0F) - 0.0001F;
  253. if (euler.x < negativeFlip)
  254. euler.x += 2.0f * (float)Math.PI;
  255. else if (euler.x > positiveFlip)
  256. euler.x -= 2.0f * (float)Math.PI;
  257. if (euler.y < negativeFlip)
  258. euler.y += 2.0f * (float)Math.PI;
  259. else if (euler.y > positiveFlip)
  260. euler.y -= 2.0f * (float)Math.PI;
  261. if (euler.z < negativeFlip)
  262. euler.z += 2.0f * (float)Math.PI;
  263. else if (euler.z > positiveFlip)
  264. euler.z -= 2.0f * (float)Math.PI;
  265. return euler;
  266. }
  267. private static Vector3 MatrixToEuler(Matrix3x3 matrix)
  268. {
  269. // from http://www.geometrictools.com/Documentation/EulerAngles.pdf
  270. // YXZ order
  271. Vector3 v = Vector3.zero;
  272. if (matrix.Data[7] < 0.999F) // some fudge for imprecision
  273. {
  274. if (matrix.Data[7] > -0.999F) // some fudge for imprecision
  275. {
  276. v.x = Mathf.Asin(-matrix.Data[7]);
  277. v.y = Mathf.Atan2(matrix.Data[6], matrix.Data[8]);
  278. v.z = Mathf.Atan2(matrix.Data[1], matrix.Data[4]);
  279. MakePositive(v);
  280. }
  281. else
  282. {
  283. // WARNING. Not unique. YA - ZA = atan2(r01,r00)
  284. v.x = (float)Math.PI * 0.5F;
  285. v.y = Mathf.Atan2(matrix.Data[3], matrix.Data[0]);
  286. v.z = 0.0F;
  287. MakePositive(v);
  288. }
  289. }
  290. else
  291. {
  292. // WARNING. Not unique. YA + ZA = atan2(-r01,r00)
  293. v.x = -(float)Math.PI * 0.5F;
  294. v.y = Mathf.Atan2(-matrix.Data[3], matrix.Data[0]);
  295. v.z = 0.0F;
  296. MakePositive(v);
  297. }
  298. return v; //返回的是弧度值
  299. }
  300. private static Quaternion MatrixToQuaternion(Matrix3x3 kRot)
  301. {
  302. Quaternion q = new Quaternion();
  303. // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes
  304. // article "Quaternionf Calculus and Fast Animation".
  305. float fTrace = kRot.Get(0, 0) + kRot.Get(1, 1) + kRot.Get(2, 2);
  306. float fRoot;
  307. if (fTrace > 0.0f)
  308. {
  309. // |w| > 1/2, mafy as well choose w > 1/2
  310. fRoot = Mathf.Sqrt(fTrace + 1.0f); // 2w
  311. q.w = 0.5f * fRoot;
  312. fRoot = 0.5f / fRoot; // 1/(4w)
  313. q.x = (kRot.Get(2, 1) - kRot.Get(1, 2)) * fRoot;
  314. q.y = (kRot.Get(0, 2) - kRot.Get(2, 0)) * fRoot;
  315. q.z = (kRot.Get(1, 0) - kRot.Get(0, 1)) * fRoot;
  316. }
  317. else
  318. {
  319. // |w| <= 1/2
  320. int[] s_iNext = new int[3] { 1, 2, 0 };
  321. int i = 0;
  322. if (kRot.Get(1, 1) > kRot.Get(0, 0))
  323. i = 1;
  324. if (kRot.Get(2, 2) > kRot.Get(i, i))
  325. i = 2;
  326. int j = s_iNext[i];
  327. int k = s_iNext[j];
  328. fRoot = Mathf.Sqrt(kRot.Get(i, i) - kRot.Get(j, j) - kRot.Get(k, k) + 1.0f);
  329. float[] apkQuat = new float[3] { q.x, q.y, q.z };
  330. apkQuat[i] = 0.5f * fRoot;
  331. fRoot = 0.5f / fRoot;
  332. q.w = (kRot.Get(k, j) - kRot.Get(j, k)) * fRoot;
  333. apkQuat[j] = (kRot.Get(j, i) + kRot.Get(i, j)) * fRoot;
  334. apkQuat[k] = (kRot.Get(k, i) + kRot.Get(i, k)) * fRoot;
  335. q.x = apkQuat[0];
  336. q.y = apkQuat[1];
  337. q.z = apkQuat[2];
  338. }
  339. q = Quaternion.Normalize(q);
  340. return q;
  341. }
  342. public static Quaternion FromToRotation(Vector3 a, Vector3 b)
  343. {
  344. //return UnityEngine.Quaternion.FromToRotation(a, b);
  345. Vector3 start = a.normalized;
  346. Vector3 dest = b.normalized;
  347. float cosTheta = Vector3.Dot(start, dest);
  348. Vector3 rotationAxis;
  349. Quaternion quaternion;
  350. if (cosTheta < -1 + 0.001f)
  351. {
  352. rotationAxis = Vector3.Cross(new Vector3(0.0f, 0.0f, 1.0f), start);
  353. if (rotationAxis.sqrMagnitude < 0.01f)
  354. {
  355. rotationAxis = Vector3.Cross(new Vector3(1.0f, 0.0f, 0.0f), start);
  356. }
  357. rotationAxis.Normalize();
  358. quaternion = new Quaternion((float) Math.PI, rotationAxis);
  359. quaternion.Normalize();
  360. return quaternion;
  361. }
  362. rotationAxis = Vector3.Cross(start, dest);
  363. float s = (float)Math.Sqrt((1 + cosTheta) * 2);
  364. float invs = 1 / s;
  365. quaternion = new Quaternion(rotationAxis.x * invs, rotationAxis.y * invs, rotationAxis.z * invs, s * 0.5f);
  366. quaternion.Normalize();
  367. return quaternion;
  368. }
  369. public static bool LookRotationToQuaternion(Vector3 viewVec, Vector3 upVec, out Quaternion quat)
  370. {
  371. quat = Quaternion.identity;
  372. // Generates a Right handed Quat from a look rotation. Returns if conversion was successful.
  373. Matrix3x3 m;
  374. if (!Matrix3x3.LookRotationToMatrix(viewVec, upVec, out m))
  375. return false;
  376. quat = MatrixToQuaternion(m);
  377. return true;
  378. }
  379. public static Quaternion LookRotation(Vector3 viewVec, Vector3 upVec)
  380. {
  381. Quaternion q;
  382. bool ret = LookRotationToQuaternion(viewVec, upVec, out q);
  383. if (!ret)
  384. {
  385. throw new Exception("Look fail!");
  386. }
  387. return q;
  388. }
  389. public static void CreateFromYawPitchRoll(float yaw, float pitch, float roll, out Quaternion result)
  390. {
  391. float num1 = roll * 0.5f;
  392. float num2 = (float) Math.Sin((double) num1);
  393. float num3 = (float) Math.Cos((double) num1);
  394. float num4 = pitch * 0.5f;
  395. float num5 = (float) Math.Sin((double) num4);
  396. float num6 = (float) Math.Cos((double) num4);
  397. float num7 = yaw * 0.5f;
  398. float num8 = (float) Math.Sin((double) num7);
  399. float num9 = (float) Math.Cos((double) num7);
  400. result.x = (float) ((double) num9 * (double) num5 * (double) num3 + (double) num8 * (double) num6 * (double) num2);
  401. result.y = (float) ((double) num8 * (double) num6 * (double) num3 - (double) num9 * (double) num5 * (double) num2);
  402. result.z = (float) ((double) num9 * (double) num6 * (double) num2 - (double) num8 * (double) num5 * (double) num3);
  403. result.w = (float) ((double) num9 * (double) num6 * (double) num3 + (double) num8 * (double) num5 * (double) num2);
  404. }
  405. public static Quaternion CreateFromRotationMatrix(Matrix4x4 matrix)
  406. {
  407. float num1 = matrix.m00 + matrix.m11 + matrix.m22;
  408. Quaternion quaternion = new Quaternion();
  409. if ((double) num1 > 0.0)
  410. {
  411. float num2 = (float) Math.Sqrt((double) num1 + 1.0);
  412. quaternion.w = num2 * 0.5f;
  413. float num3 = 0.5f / num2;
  414. quaternion.x = (matrix.m21 - matrix.m12) * num3;
  415. quaternion.y = (matrix.m02 - matrix.m20) * num3;
  416. quaternion.z = (matrix.m10 - matrix.m01) * num3;
  417. return quaternion;
  418. }
  419. if ((double) matrix.m00 >= (double) matrix.m11 && (double) matrix.m00 >= (double) matrix.m22)
  420. {
  421. float num2 = (float) Math.Sqrt(1.0 + (double) matrix.m00 - (double) matrix.m11 - (double) matrix.m22);
  422. float num3 = 0.5f / num2;
  423. quaternion.x = 0.5f * num2;
  424. quaternion.y = (matrix.m10 + matrix.m01) * num3;
  425. quaternion.z = (matrix.m20 + matrix.m02) * num3;
  426. quaternion.w = (matrix.m21 - matrix.m12) * num3;
  427. return quaternion;
  428. }
  429. if ((double) matrix.m11 > (double) matrix.m22)
  430. {
  431. float num2 = (float) Math.Sqrt(1.0 + (double) matrix.m11 - (double) matrix.m00 - (double) matrix.m22);
  432. float num3 = 0.5f / num2;
  433. quaternion.x = (matrix.m01 + matrix.m10) * num3;
  434. quaternion.y = 0.5f * num2;
  435. quaternion.z = (matrix.m12 + matrix.m21) * num3;
  436. quaternion.w = (matrix.m02 - matrix.m20) * num3;
  437. return quaternion;
  438. }
  439. float num4 = (float) Math.Sqrt(1.0 + (double) matrix.m22 - (double) matrix.m00 - (double) matrix.m11);
  440. float num5 = 0.5f / num4;
  441. quaternion.x = (matrix.m02 + matrix.m20) * num5;
  442. quaternion.y = (matrix.m12 + matrix.m21) * num5;
  443. quaternion.z = 0.5f * num4;
  444. quaternion.w = (matrix.m10 - matrix.m01) * num5;
  445. return quaternion;
  446. }
  447. public static void CreateFromRotationMatrix(ref Matrix4x4 matrix, out Quaternion result)
  448. {
  449. float num1 = matrix.m00 + matrix.m11 + matrix.m22;
  450. if ((double) num1 > 0.0)
  451. {
  452. float num2 = (float) Math.Sqrt((double) num1 + 1.0);
  453. result.w = num2 * 0.5f;
  454. float num3 = 0.5f / num2;
  455. result.x = (matrix.m21 - matrix.m12) * num3;
  456. result.y = (matrix.m02 - matrix.m20) * num3;
  457. result.z = (matrix.m10 - matrix.m01) * num3;
  458. }
  459. else if ((double) matrix.m00 >= (double) matrix.m11 && (double) matrix.m00 >= (double) matrix.m22)
  460. {
  461. float num2 = (float) Math.Sqrt(1.0 + (double) matrix.m00 - (double) matrix.m11 - (double) matrix.m22);
  462. float num3 = 0.5f / num2;
  463. result.x = 0.5f * num2;
  464. result.y = (matrix.m10 + matrix.m01) * num3;
  465. result.z = (matrix.m20 + matrix.m02) * num3;
  466. result.w = (matrix.m21 - matrix.m12) * num3;
  467. }
  468. else if ((double) matrix.m11 > (double) matrix.m22)
  469. {
  470. float num2 = (float) Math.Sqrt(1.0 + (double) matrix.m11 - (double) matrix.m00 - (double) matrix.m22);
  471. float num3 = 0.5f / num2;
  472. result.x = (matrix.m01 + matrix.m10) * num3;
  473. result.y = 0.5f * num2;
  474. result.z = (matrix.m12 + matrix.m21) * num3;
  475. result.w = (matrix.m02 - matrix.m20) * num3;
  476. }
  477. else
  478. {
  479. float num2 = (float) Math.Sqrt(1.0 + (double) matrix.m22 - (double) matrix.m00 - (double) matrix.m11);
  480. float num3 = 0.5f / num2;
  481. result.x = (matrix.m02 + matrix.m20) * num3;
  482. result.y = (matrix.m12 + matrix.m21) * num3;
  483. result.z = 0.5f * num2;
  484. result.w = (matrix.m10 - matrix.m01) * num3;
  485. }
  486. }
  487. public static float Dot(Quaternion quaternion1, Quaternion quaternion2)
  488. {
  489. return (float) ((double) quaternion1.x * (double) quaternion2.x + (double) quaternion1.y * (double) quaternion2.y +
  490. (double) quaternion1.z * (double) quaternion2.z + (double) quaternion1.w * (double) quaternion2.w);
  491. }
  492. public static void Dot(ref Quaternion quaternion1, ref Quaternion quaternion2, out float result)
  493. {
  494. result = (float) ((double) quaternion1.x * (double) quaternion2.x + (double) quaternion1.y * (double) quaternion2.y +
  495. (double) quaternion1.z * (double) quaternion2.z + (double) quaternion1.w * (double) quaternion2.w);
  496. }
  497. public static Quaternion Slerp(Quaternion quaternion1, Quaternion quaternion2, float amount)
  498. {
  499. float num1 = amount;
  500. float num2 = (float) ((double) quaternion1.x * (double) quaternion2.x + (double) quaternion1.y * (double) quaternion2.y +
  501. (double) quaternion1.z * (double) quaternion2.z + (double) quaternion1.w * (double) quaternion2.w);
  502. bool flag = false;
  503. if ((double) num2 < 0.0)
  504. {
  505. flag = true;
  506. num2 = -num2;
  507. }
  508. float num3;
  509. float num4;
  510. if ((double) num2 > 0.999998986721039)
  511. {
  512. num3 = 1f - num1;
  513. num4 = flag? -num1 : num1;
  514. }
  515. else
  516. {
  517. float num5 = (float) Math.Acos((double) num2);
  518. float num6 = (float) (1.0 / Math.Sin((double) num5));
  519. num3 = (float) Math.Sin((1.0 - (double) num1) * (double) num5) * num6;
  520. num4 = flag? (float) -Math.Sin((double) num1 * (double) num5) * num6 : (float) Math.Sin((double) num1 * (double) num5) * num6;
  521. }
  522. Quaternion quaternion;
  523. quaternion.x = (float) ((double) num3 * (double) quaternion1.x + (double) num4 * (double) quaternion2.x);
  524. quaternion.y = (float) ((double) num3 * (double) quaternion1.y + (double) num4 * (double) quaternion2.y);
  525. quaternion.z = (float) ((double) num3 * (double) quaternion1.z + (double) num4 * (double) quaternion2.z);
  526. quaternion.w = (float) ((double) num3 * (double) quaternion1.w + (double) num4 * (double) quaternion2.w);
  527. return quaternion;
  528. }
  529. public static void Slerp(ref Quaternion quaternion1, ref Quaternion quaternion2, float amount, out Quaternion result)
  530. {
  531. float num1 = amount;
  532. float num2 = (float) ((double) quaternion1.x * (double) quaternion2.x + (double) quaternion1.y * (double) quaternion2.y +
  533. (double) quaternion1.z * (double) quaternion2.z + (double) quaternion1.w * (double) quaternion2.w);
  534. bool flag = false;
  535. if ((double) num2 < 0.0)
  536. {
  537. flag = true;
  538. num2 = -num2;
  539. }
  540. float num3;
  541. float num4;
  542. if ((double) num2 > 0.999998986721039)
  543. {
  544. num3 = 1f - num1;
  545. num4 = flag? -num1 : num1;
  546. }
  547. else
  548. {
  549. float num5 = (float) Math.Acos((double) num2);
  550. float num6 = (float) (1.0 / Math.Sin((double) num5));
  551. num3 = (float) Math.Sin((1.0 - (double) num1) * (double) num5) * num6;
  552. num4 = flag? (float) -Math.Sin((double) num1 * (double) num5) * num6 : (float) Math.Sin((double) num1 * (double) num5) * num6;
  553. }
  554. result.x = (float) ((double) num3 * (double) quaternion1.x + (double) num4 * (double) quaternion2.x);
  555. result.y = (float) ((double) num3 * (double) quaternion1.y + (double) num4 * (double) quaternion2.y);
  556. result.z = (float) ((double) num3 * (double) quaternion1.z + (double) num4 * (double) quaternion2.z);
  557. result.w = (float) ((double) num3 * (double) quaternion1.w + (double) num4 * (double) quaternion2.w);
  558. }
  559. public static Quaternion Lerp(Quaternion quaternion1, Quaternion quaternion2, float amount)
  560. {
  561. float num1 = amount;
  562. float num2 = 1f - num1;
  563. Quaternion quaternion = new Quaternion();
  564. if ((double) quaternion1.x * (double) quaternion2.x + (double) quaternion1.y * (double) quaternion2.y +
  565. (double) quaternion1.z * (double) quaternion2.z + (double) quaternion1.w * (double) quaternion2.w >= 0.0)
  566. {
  567. quaternion.x = (float) ((double) num2 * (double) quaternion1.x + (double) num1 * (double) quaternion2.x);
  568. quaternion.y = (float) ((double) num2 * (double) quaternion1.y + (double) num1 * (double) quaternion2.y);
  569. quaternion.z = (float) ((double) num2 * (double) quaternion1.z + (double) num1 * (double) quaternion2.z);
  570. quaternion.w = (float) ((double) num2 * (double) quaternion1.w + (double) num1 * (double) quaternion2.w);
  571. }
  572. else
  573. {
  574. quaternion.x = (float) ((double) num2 * (double) quaternion1.x - (double) num1 * (double) quaternion2.x);
  575. quaternion.y = (float) ((double) num2 * (double) quaternion1.y - (double) num1 * (double) quaternion2.y);
  576. quaternion.z = (float) ((double) num2 * (double) quaternion1.z - (double) num1 * (double) quaternion2.z);
  577. quaternion.w = (float) ((double) num2 * (double) quaternion1.w - (double) num1 * (double) quaternion2.w);
  578. }
  579. float num3 = 1f / (float) Math.Sqrt((double) quaternion.x * (double) quaternion.x + (double) quaternion.y * (double) quaternion.y +
  580. (double) quaternion.z * (double) quaternion.z + (double) quaternion.w * (double) quaternion.w);
  581. quaternion.x *= num3;
  582. quaternion.y *= num3;
  583. quaternion.z *= num3;
  584. quaternion.w *= num3;
  585. return quaternion;
  586. }
  587. public static void Lerp(ref Quaternion quaternion1, ref Quaternion quaternion2, float amount, out Quaternion result)
  588. {
  589. float num1 = amount;
  590. float num2 = 1f - num1;
  591. if ((double) quaternion1.x * (double) quaternion2.x + (double) quaternion1.y * (double) quaternion2.y +
  592. (double) quaternion1.z * (double) quaternion2.z + (double) quaternion1.w * (double) quaternion2.w >= 0.0)
  593. {
  594. result.x = (float) ((double) num2 * (double) quaternion1.x + (double) num1 * (double) quaternion2.x);
  595. result.y = (float) ((double) num2 * (double) quaternion1.y + (double) num1 * (double) quaternion2.y);
  596. result.z = (float) ((double) num2 * (double) quaternion1.z + (double) num1 * (double) quaternion2.z);
  597. result.w = (float) ((double) num2 * (double) quaternion1.w + (double) num1 * (double) quaternion2.w);
  598. }
  599. else
  600. {
  601. result.x = (float) ((double) num2 * (double) quaternion1.x - (double) num1 * (double) quaternion2.x);
  602. result.y = (float) ((double) num2 * (double) quaternion1.y - (double) num1 * (double) quaternion2.y);
  603. result.z = (float) ((double) num2 * (double) quaternion1.z - (double) num1 * (double) quaternion2.z);
  604. result.w = (float) ((double) num2 * (double) quaternion1.w - (double) num1 * (double) quaternion2.w);
  605. }
  606. float num3 = 1f / (float) Math.Sqrt((double) result.x * (double) result.x + (double) result.y * (double) result.y +
  607. (double) result.z * (double) result.z + (double) result.w * (double) result.w);
  608. result.x *= num3;
  609. result.y *= num3;
  610. result.z *= num3;
  611. result.w *= num3;
  612. }
  613. public void Conjugate()
  614. {
  615. this.x = -this.x;
  616. this.y = -this.y;
  617. this.z = -this.z;
  618. }
  619. public static Quaternion Conjugate(Quaternion value)
  620. {
  621. Quaternion quaternion;
  622. quaternion.x = -value.x;
  623. quaternion.y = -value.y;
  624. quaternion.z = -value.z;
  625. quaternion.w = value.w;
  626. return quaternion;
  627. }
  628. public static void Conjugate(ref Quaternion value, out Quaternion result)
  629. {
  630. result.x = -value.x;
  631. result.y = -value.y;
  632. result.z = -value.z;
  633. result.w = value.w;
  634. }
  635. private static float Angle(Quaternion a, Quaternion b)
  636. {
  637. return (float) (Math.Acos((double) Math.Min(Math.Abs(Quaternion.Dot(a, b)), 1f)) * 2.0 * 57.2957801818848);
  638. }
  639. private static void Angle(ref Quaternion a, ref Quaternion b, out float result)
  640. {
  641. result = (float) (Math.Acos((double) Math.Min(Math.Abs(Quaternion.Dot(a, b)), 1f)) * 2.0 * 57.2957801818848);
  642. }
  643. public static Quaternion Negate(Quaternion quaternion)
  644. {
  645. Quaternion quaternion1;
  646. quaternion1.x = -quaternion.x;
  647. quaternion1.y = -quaternion.y;
  648. quaternion1.z = -quaternion.z;
  649. quaternion1.w = -quaternion.w;
  650. return quaternion1;
  651. }
  652. public static void Negate(ref Quaternion quaternion, out Quaternion result)
  653. {
  654. result.x = -quaternion.x;
  655. result.y = -quaternion.y;
  656. result.z = -quaternion.z;
  657. result.w = -quaternion.w;
  658. }
  659. public static Quaternion Sub(Quaternion quaternion1, Quaternion quaternion2)
  660. {
  661. Quaternion quaternion;
  662. quaternion.x = quaternion1.x - quaternion2.x;
  663. quaternion.y = quaternion1.y - quaternion2.y;
  664. quaternion.z = quaternion1.z - quaternion2.z;
  665. quaternion.w = quaternion1.w - quaternion2.w;
  666. return quaternion;
  667. }
  668. public static void Sub(ref Quaternion quaternion1, ref Quaternion quaternion2, out Quaternion result)
  669. {
  670. result.x = quaternion1.x - quaternion2.x;
  671. result.y = quaternion1.y - quaternion2.y;
  672. result.z = quaternion1.z - quaternion2.z;
  673. result.w = quaternion1.w - quaternion2.w;
  674. }
  675. public static Vector3 Rotate(Quaternion rotation, Vector3 vector3)
  676. {
  677. float num1 = rotation.x * 2f;
  678. float num2 = rotation.y * 2f;
  679. float num3 = rotation.z * 2f;
  680. float num4 = rotation.x * num1;
  681. float num5 = rotation.y * num2;
  682. float num6 = rotation.z * num3;
  683. float num7 = rotation.x * num2;
  684. float num8 = rotation.x * num3;
  685. float num9 = rotation.y * num3;
  686. float num10 = rotation.w * num1;
  687. float num11 = rotation.w * num2;
  688. float num12 = rotation.w * num3;
  689. Vector3 vector3_1;
  690. vector3_1.x = (float) ((1.0 - ((double) num5 + (double) num6)) * (double) vector3.x +
  691. ((double) num7 - (double) num12) * (double) vector3.y + ((double) num8 + (double) num11) * (double) vector3.z);
  692. vector3_1.y = (float) (((double) num7 + (double) num12) * (double) vector3.x +
  693. (1.0 - ((double) num4 + (double) num6)) * (double) vector3.y + ((double) num9 - (double) num10) * (double) vector3.z);
  694. vector3_1.z = (float) (((double) num8 - (double) num11) * (double) vector3.x + ((double) num9 + (double) num10) * (double) vector3.y +
  695. (1.0 - ((double) num4 + (double) num5)) * (double) vector3.z);
  696. return vector3_1;
  697. }
  698. public static void Rotate(ref Quaternion rotation, ref Vector3 vector3, out Vector3 result)
  699. {
  700. float num1 = rotation.x * 2f;
  701. float num2 = rotation.y * 2f;
  702. float num3 = rotation.z * 2f;
  703. float num4 = rotation.x * num1;
  704. float num5 = rotation.y * num2;
  705. float num6 = rotation.z * num3;
  706. float num7 = rotation.x * num2;
  707. float num8 = rotation.x * num3;
  708. float num9 = rotation.y * num3;
  709. float num10 = rotation.w * num1;
  710. float num11 = rotation.w * num2;
  711. float num12 = rotation.w * num3;
  712. result.x = (float) ((1.0 - ((double) num5 + (double) num6)) * (double) vector3.x + ((double) num7 - (double) num12) * (double) vector3.y +
  713. ((double) num8 + (double) num11) * (double) vector3.z);
  714. result.y = (float) (((double) num7 + (double) num12) * (double) vector3.x + (1.0 - ((double) num4 + (double) num6)) * (double) vector3.y +
  715. ((double) num9 - (double) num10) * (double) vector3.z);
  716. result.z = (float) (((double) num8 - (double) num11) * (double) vector3.x + ((double) num9 + (double) num10) * (double) vector3.y +
  717. (1.0 - ((double) num4 + (double) num5)) * (double) vector3.z);
  718. }
  719. public static Quaternion Multiply(Quaternion quaternion1, Quaternion quaternion2)
  720. {
  721. float x1 = quaternion1.x;
  722. float y1 = quaternion1.y;
  723. float z1 = quaternion1.z;
  724. float w1 = quaternion1.w;
  725. float x2 = quaternion2.x;
  726. float y2 = quaternion2.y;
  727. float z2 = quaternion2.z;
  728. float w2 = quaternion2.w;
  729. float num1 = (float) ((double) y1 * (double) z2 - (double) z1 * (double) y2);
  730. float num2 = (float) ((double) z1 * (double) x2 - (double) x1 * (double) z2);
  731. float num3 = (float) ((double) x1 * (double) y2 - (double) y1 * (double) x2);
  732. float num4 = (float) ((double) x1 * (double) x2 + (double) y1 * (double) y2 + (double) z1 * (double) z2);
  733. Quaternion quaternion;
  734. quaternion.x = (float) ((double) x1 * (double) w2 + (double) x2 * (double) w1) + num1;
  735. quaternion.y = (float) ((double) y1 * (double) w2 + (double) y2 * (double) w1) + num2;
  736. quaternion.z = (float) ((double) z1 * (double) w2 + (double) z2 * (double) w1) + num3;
  737. quaternion.w = w1 * w2 - num4;
  738. return quaternion;
  739. }
  740. public static void Multiply(ref Quaternion quaternion1, ref Quaternion quaternion2, out Quaternion result)
  741. {
  742. float x1 = quaternion1.x;
  743. float y1 = quaternion1.y;
  744. float z1 = quaternion1.z;
  745. float w1 = quaternion1.w;
  746. float x2 = quaternion2.x;
  747. float y2 = quaternion2.y;
  748. float z2 = quaternion2.z;
  749. float w2 = quaternion2.w;
  750. float num1 = (float) ((double) y1 * (double) z2 - (double) z1 * (double) y2);
  751. float num2 = (float) ((double) z1 * (double) x2 - (double) x1 * (double) z2);
  752. float num3 = (float) ((double) x1 * (double) y2 - (double) y1 * (double) x2);
  753. float num4 = (float) ((double) x1 * (double) x2 + (double) y1 * (double) y2 + (double) z1 * (double) z2);
  754. result.x = (float) ((double) x1 * (double) w2 + (double) x2 * (double) w1) + num1;
  755. result.y = (float) ((double) y1 * (double) w2 + (double) y2 * (double) w1) + num2;
  756. result.z = (float) ((double) z1 * (double) w2 + (double) z2 * (double) w1) + num3;
  757. result.w = w1 * w2 - num4;
  758. }
  759. public static Quaternion operator -(Quaternion quaternion)
  760. {
  761. Quaternion quaternion1;
  762. quaternion1.x = -quaternion.x;
  763. quaternion1.y = -quaternion.y;
  764. quaternion1.z = -quaternion.z;
  765. quaternion1.w = -quaternion.w;
  766. return quaternion1;
  767. }
  768. public static bool operator ==(Quaternion quaternion1, Quaternion quaternion2)
  769. {
  770. if ((double) quaternion1.x == (double) quaternion2.x && (double) quaternion1.y == (double) quaternion2.y &&
  771. (double) quaternion1.z == (double) quaternion2.z)
  772. return (double) quaternion1.w == (double) quaternion2.w;
  773. return false;
  774. }
  775. public static bool operator !=(Quaternion quaternion1, Quaternion quaternion2)
  776. {
  777. if ((double) quaternion1.x == (double) quaternion2.x && (double) quaternion1.y == (double) quaternion2.y &&
  778. (double) quaternion1.z == (double) quaternion2.z)
  779. return (double) quaternion1.w != (double) quaternion2.w;
  780. return true;
  781. }
  782. public static Quaternion operator -(Quaternion quaternion1, Quaternion quaternion2)
  783. {
  784. Quaternion quaternion;
  785. quaternion.x = quaternion1.x - quaternion2.x;
  786. quaternion.y = quaternion1.y - quaternion2.y;
  787. quaternion.z = quaternion1.z - quaternion2.z;
  788. quaternion.w = quaternion1.w - quaternion2.w;
  789. return quaternion;
  790. }
  791. public static Quaternion operator *(Quaternion quaternion1, Quaternion quaternion2)
  792. {
  793. float x1 = quaternion1.x;
  794. float y1 = quaternion1.y;
  795. float z1 = quaternion1.z;
  796. float w1 = quaternion1.w;
  797. float x2 = quaternion2.x;
  798. float y2 = quaternion2.y;
  799. float z2 = quaternion2.z;
  800. float w2 = quaternion2.w;
  801. float num1 = (float) ((double) y1 * (double) z2 - (double) z1 * (double) y2);
  802. float num2 = (float) ((double) z1 * (double) x2 - (double) x1 * (double) z2);
  803. float num3 = (float) ((double) x1 * (double) y2 - (double) y1 * (double) x2);
  804. float num4 = (float) ((double) x1 * (double) x2 + (double) y1 * (double) y2 + (double) z1 * (double) z2);
  805. Quaternion quaternion;
  806. quaternion.x = (float) ((double) x1 * (double) w2 + (double) x2 * (double) w1) + num1;
  807. quaternion.y = (float) ((double) y1 * (double) w2 + (double) y2 * (double) w1) + num2;
  808. quaternion.z = (float) ((double) z1 * (double) w2 + (double) z2 * (double) w1) + num3;
  809. quaternion.w = w1 * w2 - num4;
  810. return quaternion;
  811. }
  812. public static Vector3 operator *(Quaternion rotation, Vector3 point)
  813. {
  814. float num1 = rotation.x * 2f;
  815. float num2 = rotation.y * 2f;
  816. float num3 = rotation.z * 2f;
  817. float num4 = rotation.x * num1;
  818. float num5 = rotation.y * num2;
  819. float num6 = rotation.z * num3;
  820. float num7 = rotation.x * num2;
  821. float num8 = rotation.x * num3;
  822. float num9 = rotation.y * num3;
  823. float num10 = rotation.w * num1;
  824. float num11 = rotation.w * num2;
  825. float num12 = rotation.w * num3;
  826. Vector3 vector3;
  827. vector3.x = (float) ((1.0 - ((double) num5 + (double) num6)) * (double) point.x + ((double) num7 - (double) num12) * (double) point.y + ((double) num8 + (double) num11) * (double) point.z);
  828. vector3.y = (float) (((double) num7 + (double) num12) * (double) point.x + (1.0 - ((double) num4 + (double) num6)) * (double) point.y + ((double) num9 - (double) num10) * (double) point.z);
  829. vector3.z = (float) (((double) num8 - (double) num11) * (double) point.x + ((double) num9 + (double) num10) * (double) point.y + (1.0 - ((double) num4 + (double) num5)) * (double) point.z);
  830. return vector3;
  831. }
  832. }
  833. }