Quaternion.cs 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920
  1. using System;
  2. using System.Globalization;
  3. namespace UnityEngine
  4. {
  5. [Serializable]
  6. public struct Quaternion: IEquatable<Quaternion>
  7. {
  8. public static readonly Quaternion identity = new Quaternion(0.0f, 0.0f, 0.0f, 1f);
  9. public float w;
  10. public float x;
  11. public float y;
  12. public float z;
  13. public Quaternion(float x, float y, float z, float w)
  14. {
  15. this.x = x;
  16. this.y = y;
  17. this.z = z;
  18. this.w = w;
  19. }
  20. public Quaternion(float angle, Vector3 rkAxis)
  21. {
  22. float num1 = angle * 0.5f;
  23. float num2 = (float) Math.Sin((double) num1);
  24. float num3 = (float) Math.Cos((double) num1);
  25. this.x = rkAxis.x * num2;
  26. this.y = rkAxis.y * num2;
  27. this.z = rkAxis.z * num2;
  28. this.w = num3;
  29. }
  30. public Quaternion(Vector3 xaxis, Vector3 yaxis, Vector3 zaxis)
  31. {
  32. Matrix4x4 identityM = Matrix4x4.identity;
  33. identityM[0, 0] = xaxis.x;
  34. identityM[1, 0] = xaxis.y;
  35. identityM[2, 0] = xaxis.z;
  36. identityM[0, 1] = yaxis.x;
  37. identityM[1, 1] = yaxis.y;
  38. identityM[2, 1] = yaxis.z;
  39. identityM[0, 2] = zaxis.x;
  40. identityM[1, 2] = zaxis.y;
  41. identityM[2, 2] = zaxis.z;
  42. Quaternion.CreateFromRotationMatrix(ref identityM, out this);
  43. }
  44. public Quaternion(float yaw, float pitch, float roll)
  45. {
  46. float num1 = roll * 0.5f;
  47. float num2 = (float) Math.Sin((double) num1);
  48. float num3 = (float) Math.Cos((double) num1);
  49. float num4 = pitch * 0.5f;
  50. float num5 = (float) Math.Sin((double) num4);
  51. float num6 = (float) Math.Cos((double) num4);
  52. float num7 = yaw * 0.5f;
  53. float num8 = (float) Math.Sin((double) num7);
  54. float num9 = (float) Math.Cos((double) num7);
  55. this.x = (float) ((double) num9 * (double) num5 * (double) num3 + (double) num8 * (double) num6 * (double) num2);
  56. this.y = (float) ((double) num8 * (double) num6 * (double) num3 - (double) num9 * (double) num5 * (double) num2);
  57. this.z = (float) ((double) num9 * (double) num6 * (double) num2 - (double) num8 * (double) num5 * (double) num3);
  58. this.w = (float) ((double) num9 * (double) num6 * (double) num3 + (double) num8 * (double) num5 * (double) num2);
  59. }
  60. public override string ToString()
  61. {
  62. CultureInfo currentCulture = CultureInfo.CurrentCulture;
  63. return string.Format((IFormatProvider) currentCulture, "({0}, {1}, {2}, {3})", (object) this.x.ToString((IFormatProvider) currentCulture),
  64. (object) this.y.ToString((IFormatProvider) currentCulture),
  65. (object) this.z.ToString((IFormatProvider) currentCulture),
  66. (object) this.w.ToString((IFormatProvider) currentCulture));
  67. }
  68. public bool Equals(Quaternion other)
  69. {
  70. if ((double) this.x == (double) other.x && (double) this.y == (double) other.y && (double) this.z == (double) other.z)
  71. return (double) this.w == (double) other.w;
  72. return false;
  73. }
  74. public override bool Equals(object obj)
  75. {
  76. bool flag = false;
  77. if (obj is Quaternion)
  78. flag = this.Equals((Quaternion) obj);
  79. return flag;
  80. }
  81. public override int GetHashCode()
  82. {
  83. return this.x.GetHashCode() + this.y.GetHashCode() + this.z.GetHashCode() + this.w.GetHashCode();
  84. }
  85. public float LengthSquared()
  86. {
  87. return (float) ((double) this.x * (double) this.x + (double) this.y * (double) this.y + (double) this.z * (double) this.z +
  88. (double) this.w * (double) this.w);
  89. }
  90. public float Length()
  91. {
  92. return (float) Math.Sqrt((double) this.x * (double) this.x + (double) this.y * (double) this.y + (double) this.z * (double) this.z +
  93. (double) this.w * (double) this.w);
  94. }
  95. public void Normalize()
  96. {
  97. float num = 1f / (float) Math.Sqrt((double) this.x * (double) this.x + (double) this.y * (double) this.y +
  98. (double) this.z * (double) this.z + (double) this.w * (double) this.w);
  99. this.x *= num;
  100. this.y *= num;
  101. this.z *= num;
  102. this.w *= num;
  103. }
  104. public static Quaternion Normalize(Quaternion quaternion)
  105. {
  106. float num = 1f / (float) Math.Sqrt((double) quaternion.x * (double) quaternion.x + (double) quaternion.y * (double) quaternion.y +
  107. (double) quaternion.z * (double) quaternion.z + (double) quaternion.w * (double) quaternion.w);
  108. Quaternion quaternion1;
  109. quaternion1.x = quaternion.x * num;
  110. quaternion1.y = quaternion.y * num;
  111. quaternion1.z = quaternion.z * num;
  112. quaternion1.w = quaternion.w * num;
  113. return quaternion1;
  114. }
  115. public static void Normalize(ref Quaternion quaternion, out Quaternion result)
  116. {
  117. float num = 1f / (float) Math.Sqrt((double) quaternion.x * (double) quaternion.x + (double) quaternion.y * (double) quaternion.y +
  118. (double) quaternion.z * (double) quaternion.z + (double) quaternion.w * (double) quaternion.w);
  119. result.x = quaternion.x * num;
  120. result.y = quaternion.y * num;
  121. result.z = quaternion.z * num;
  122. result.w = quaternion.w * num;
  123. }
  124. public static Quaternion Inverse(Quaternion quaternion)
  125. {
  126. float num = 1f / (float) ((double) quaternion.x * (double) quaternion.x + (double) quaternion.y * (double) quaternion.y +
  127. (double) quaternion.z * (double) quaternion.z + (double) quaternion.w * (double) quaternion.w);
  128. Quaternion quaternion1;
  129. quaternion1.x = -quaternion.x * num;
  130. quaternion1.y = -quaternion.y * num;
  131. quaternion1.z = -quaternion.z * num;
  132. quaternion1.w = quaternion.w * num;
  133. return quaternion1;
  134. }
  135. public static void Inverse(ref Quaternion quaternion, out Quaternion result)
  136. {
  137. float num = 1f / (float) ((double) quaternion.x * (double) quaternion.x + (double) quaternion.y * (double) quaternion.y +
  138. (double) quaternion.z * (double) quaternion.z + (double) quaternion.w * (double) quaternion.w);
  139. result.x = -quaternion.x * num;
  140. result.y = -quaternion.y * num;
  141. result.z = -quaternion.z * num;
  142. result.w = quaternion.w * num;
  143. }
  144. public static Quaternion CreateFromAxisAngle(Vector3 axis, float angle)
  145. {
  146. float num1 = angle * 0.5f;
  147. float num2 = (float) Math.Sin((double) num1);
  148. float num3 = (float) Math.Cos((double) num1);
  149. Quaternion quaternion;
  150. quaternion.x = axis.x * num2;
  151. quaternion.y = axis.y * num2;
  152. quaternion.z = axis.z * num2;
  153. quaternion.w = num3;
  154. return quaternion;
  155. }
  156. public static void CreateFromAxisAngle(ref Vector3 axis, float angle, out Quaternion result)
  157. {
  158. float num1 = angle * 0.5f;
  159. float num2 = (float) Math.Sin((double) num1);
  160. float num3 = (float) Math.Cos((double) num1);
  161. result.x = axis.x * num2;
  162. result.y = axis.y * num2;
  163. result.z = axis.z * num2;
  164. result.w = num3;
  165. }
  166. public static Quaternion CreateFromYawPitchRoll(float yaw, float pitch, float roll)
  167. {
  168. float num1 = roll * 0.5f;
  169. float num2 = (float) Math.Sin((double) num1);
  170. float num3 = (float) Math.Cos((double) num1);
  171. float num4 = pitch * 0.5f;
  172. float num5 = (float) Math.Sin((double) num4);
  173. float num6 = (float) Math.Cos((double) num4);
  174. float num7 = yaw * 0.5f;
  175. float num8 = (float) Math.Sin((double) num7);
  176. float num9 = (float) Math.Cos((double) num7);
  177. Quaternion quaternion;
  178. quaternion.x = (float) ((double) num9 * (double) num5 * (double) num3 + (double) num8 * (double) num6 * (double) num2);
  179. quaternion.y = (float) ((double) num8 * (double) num6 * (double) num3 - (double) num9 * (double) num5 * (double) num2);
  180. quaternion.z = (float) ((double) num9 * (double) num6 * (double) num2 - (double) num8 * (double) num5 * (double) num3);
  181. quaternion.w = (float) ((double) num9 * (double) num6 * (double) num3 + (double) num8 * (double) num5 * (double) num2);
  182. return quaternion;
  183. }
  184. public static Quaternion Euler(Vector3 eulerAngle)
  185. {
  186. //角度转弧度
  187. eulerAngle = Mathf.Deg2Rad(eulerAngle);
  188. float cX = (float)Math.Cos(eulerAngle.x / 2.0f);
  189. float sX = (float)Math.Sin(eulerAngle.x / 2.0f);
  190. float cY = (float)Math.Cos(eulerAngle.y / 2.0f);
  191. float sY = (float)Math.Sin(eulerAngle.y / 2.0f);
  192. float cZ = (float)Math.Cos(eulerAngle.z / 2.0f);
  193. float sZ = (float)Math.Sin(eulerAngle.z / 2.0f);
  194. Quaternion qX = new Quaternion(sX, 0, 0, cX);
  195. Quaternion qY = new Quaternion(0, sY, 0, cY);
  196. Quaternion qZ = new Quaternion(0, 0, sZ, cZ);
  197. Quaternion q = (qY * qX) * qZ;
  198. return q;
  199. }
  200. public static Quaternion Euler(float x, float y, float z)
  201. {
  202. return Euler(new Vector3(x, y, z));
  203. }
  204. private static Matrix3x3 QuaternionToMatrix(Quaternion q)
  205. {
  206. // Precalculate coordinate products
  207. float x = q.x * 2.0F;
  208. float y = q.y * 2.0F;
  209. float z = q.z * 2.0F;
  210. float xx = q.x * x;
  211. float yy = q.y * y;
  212. float zz = q.z * z;
  213. float xy = q.x * y;
  214. float xz = q.x * z;
  215. float yz = q.y * z;
  216. float wx = q.w * x;
  217. float wy = q.w * y;
  218. float wz = q.w * z;
  219. // Calculate 3x3 matrix from orthonormal basis
  220. Matrix3x3 m = Matrix3x3.identity;
  221. m.Data[0] = 1.0f - (yy + zz);
  222. m.Data[1] = xy + wz;
  223. m.Data[2] = xz - wy;
  224. m.Data[3] = xy - wz;
  225. m.Data[4] = 1.0f - (xx + zz);
  226. m.Data[5] = yz + wx;
  227. m.Data[6] = xz + wy;
  228. m.Data[7] = yz - wx;
  229. m.Data[8] = 1.0f - (xx + yy);
  230. return m;
  231. }
  232. public static Vector3 QuaternionToEuler(Quaternion quat)
  233. {
  234. Matrix3x3 m = QuaternionToMatrix(quat);
  235. Vector3 euler = MatrixToEuler(m);
  236. //弧度转角度
  237. return Mathf.Rad2Deg(euler);
  238. }
  239. private static Vector3 MakePositive(Vector3 euler)
  240. {
  241. const float negativeFlip = -0.0001F;
  242. const float positiveFlip = ((float)Math.PI * 2.0F) - 0.0001F;
  243. if (euler.x < negativeFlip)
  244. euler.x += 2.0f * (float)Math.PI;
  245. else if (euler.x > positiveFlip)
  246. euler.x -= 2.0f * (float)Math.PI;
  247. if (euler.y < negativeFlip)
  248. euler.y += 2.0f * (float)Math.PI;
  249. else if (euler.y > positiveFlip)
  250. euler.y -= 2.0f * (float)Math.PI;
  251. if (euler.z < negativeFlip)
  252. euler.z += 2.0f * (float)Math.PI;
  253. else if (euler.z > positiveFlip)
  254. euler.z -= 2.0f * (float)Math.PI;
  255. return euler;
  256. }
  257. private static Vector3 MatrixToEuler(Matrix3x3 matrix)
  258. {
  259. // from http://www.geometrictools.com/Documentation/EulerAngles.pdf
  260. // YXZ order
  261. Vector3 v = Vector3.zero;
  262. if (matrix.Data[7] < 0.999F) // some fudge for imprecision
  263. {
  264. if (matrix.Data[7] > -0.999F) // some fudge for imprecision
  265. {
  266. v.x = Mathf.Asin(-matrix.Data[7]);
  267. v.y = Mathf.Atan2(matrix.Data[6], matrix.Data[8]);
  268. v.z = Mathf.Atan2(matrix.Data[1], matrix.Data[4]);
  269. MakePositive(v);
  270. }
  271. else
  272. {
  273. // WARNING. Not unique. YA - ZA = atan2(r01,r00)
  274. v.x = (float)Math.PI * 0.5F;
  275. v.y = Mathf.Atan2(matrix.Data[3], matrix.Data[0]);
  276. v.z = 0.0F;
  277. MakePositive(v);
  278. }
  279. }
  280. else
  281. {
  282. // WARNING. Not unique. YA + ZA = atan2(-r01,r00)
  283. v.x = -(float)Math.PI * 0.5F;
  284. v.y = Mathf.Atan2(-matrix.Data[3], matrix.Data[0]);
  285. v.z = 0.0F;
  286. MakePositive(v);
  287. }
  288. return v; //返回的是弧度值
  289. }
  290. private static Quaternion MatrixToQuaternion(Matrix3x3 kRot)
  291. {
  292. Quaternion q = new Quaternion();
  293. // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes
  294. // article "Quaternionf Calculus and Fast Animation".
  295. float fTrace = kRot.Get(0, 0) + kRot.Get(1, 1) + kRot.Get(2, 2);
  296. float fRoot;
  297. if (fTrace > 0.0f)
  298. {
  299. // |w| > 1/2, mafy as well choose w > 1/2
  300. fRoot = Mathf.Sqrt(fTrace + 1.0f); // 2w
  301. q.w = 0.5f * fRoot;
  302. fRoot = 0.5f / fRoot; // 1/(4w)
  303. q.x = (kRot.Get(2, 1) - kRot.Get(1, 2)) * fRoot;
  304. q.y = (kRot.Get(0, 2) - kRot.Get(2, 0)) * fRoot;
  305. q.z = (kRot.Get(1, 0) - kRot.Get(0, 1)) * fRoot;
  306. }
  307. else
  308. {
  309. // |w| <= 1/2
  310. int[] s_iNext = new int[3] { 1, 2, 0 };
  311. int i = 0;
  312. if (kRot.Get(1, 1) > kRot.Get(0, 0))
  313. i = 1;
  314. if (kRot.Get(2, 2) > kRot.Get(i, i))
  315. i = 2;
  316. int j = s_iNext[i];
  317. int k = s_iNext[j];
  318. fRoot = Mathf.Sqrt(kRot.Get(i, i) - kRot.Get(j, j) - kRot.Get(k, k) + 1.0f);
  319. float[] apkQuat = new float[3] { q.x, q.y, q.z };
  320. apkQuat[i] = 0.5f * fRoot;
  321. fRoot = 0.5f / fRoot;
  322. q.w = (kRot.Get(k, j) - kRot.Get(j, k)) * fRoot;
  323. apkQuat[j] = (kRot.Get(j, i) + kRot.Get(i, j)) * fRoot;
  324. apkQuat[k] = (kRot.Get(k, i) + kRot.Get(i, k)) * fRoot;
  325. q.x = apkQuat[0];
  326. q.y = apkQuat[1];
  327. q.z = apkQuat[2];
  328. }
  329. q = Quaternion.Normalize(q);
  330. return q;
  331. }
  332. public static Quaternion FromToRotation(Vector3 a, Vector3 b)
  333. {
  334. //return UnityEngine.Quaternion.FromToRotation(a, b);
  335. Vector3 start = a.normalized;
  336. Vector3 dest = b.normalized;
  337. float cosTheta = Vector3.Dot(start, dest);
  338. Vector3 rotationAxis;
  339. Quaternion quaternion;
  340. if (cosTheta < -1 + 0.001f)
  341. {
  342. rotationAxis = Vector3.Cross(new Vector3(0.0f, 0.0f, 1.0f), start);
  343. if (rotationAxis.sqrMagnitude < 0.01f)
  344. {
  345. rotationAxis = Vector3.Cross(new Vector3(1.0f, 0.0f, 0.0f), start);
  346. }
  347. rotationAxis.Normalize();
  348. quaternion = new Quaternion((float) Math.PI, rotationAxis);
  349. quaternion.Normalize();
  350. return quaternion;
  351. }
  352. rotationAxis = Vector3.Cross(start, dest);
  353. float s = (float)Math.Sqrt((1 + cosTheta) * 2);
  354. float invs = 1 / s;
  355. quaternion = new Quaternion(rotationAxis.x * invs, rotationAxis.y * invs, rotationAxis.z * invs, s * 0.5f);
  356. quaternion.Normalize();
  357. return quaternion;
  358. }
  359. public static bool LookRotationToQuaternion(Vector3 viewVec, Vector3 upVec, out Quaternion quat)
  360. {
  361. quat = Quaternion.identity;
  362. // Generates a Right handed Quat from a look rotation. Returns if conversion was successful.
  363. Matrix3x3 m;
  364. if (!Matrix3x3.LookRotationToMatrix(viewVec, upVec, out m))
  365. return false;
  366. quat = MatrixToQuaternion(m);
  367. return true;
  368. }
  369. public static Quaternion LookRotation(Vector3 viewVec, Vector3 upVec)
  370. {
  371. Quaternion q;
  372. bool ret = LookRotationToQuaternion(viewVec, upVec, out q);
  373. if (!ret)
  374. {
  375. throw new Exception("Look fail!");
  376. }
  377. return q;
  378. }
  379. public static void CreateFromYawPitchRoll(float yaw, float pitch, float roll, out Quaternion result)
  380. {
  381. float num1 = roll * 0.5f;
  382. float num2 = (float) Math.Sin((double) num1);
  383. float num3 = (float) Math.Cos((double) num1);
  384. float num4 = pitch * 0.5f;
  385. float num5 = (float) Math.Sin((double) num4);
  386. float num6 = (float) Math.Cos((double) num4);
  387. float num7 = yaw * 0.5f;
  388. float num8 = (float) Math.Sin((double) num7);
  389. float num9 = (float) Math.Cos((double) num7);
  390. result.x = (float) ((double) num9 * (double) num5 * (double) num3 + (double) num8 * (double) num6 * (double) num2);
  391. result.y = (float) ((double) num8 * (double) num6 * (double) num3 - (double) num9 * (double) num5 * (double) num2);
  392. result.z = (float) ((double) num9 * (double) num6 * (double) num2 - (double) num8 * (double) num5 * (double) num3);
  393. result.w = (float) ((double) num9 * (double) num6 * (double) num3 + (double) num8 * (double) num5 * (double) num2);
  394. }
  395. public static Quaternion CreateFromRotationMatrix(Matrix4x4 matrix)
  396. {
  397. float num1 = matrix.m00 + matrix.m11 + matrix.m22;
  398. Quaternion quaternion = new Quaternion();
  399. if ((double) num1 > 0.0)
  400. {
  401. float num2 = (float) Math.Sqrt((double) num1 + 1.0);
  402. quaternion.w = num2 * 0.5f;
  403. float num3 = 0.5f / num2;
  404. quaternion.x = (matrix.m21 - matrix.m12) * num3;
  405. quaternion.y = (matrix.m02 - matrix.m20) * num3;
  406. quaternion.z = (matrix.m10 - matrix.m01) * num3;
  407. return quaternion;
  408. }
  409. if ((double) matrix.m00 >= (double) matrix.m11 && (double) matrix.m00 >= (double) matrix.m22)
  410. {
  411. float num2 = (float) Math.Sqrt(1.0 + (double) matrix.m00 - (double) matrix.m11 - (double) matrix.m22);
  412. float num3 = 0.5f / num2;
  413. quaternion.x = 0.5f * num2;
  414. quaternion.y = (matrix.m10 + matrix.m01) * num3;
  415. quaternion.z = (matrix.m20 + matrix.m02) * num3;
  416. quaternion.w = (matrix.m21 - matrix.m12) * num3;
  417. return quaternion;
  418. }
  419. if ((double) matrix.m11 > (double) matrix.m22)
  420. {
  421. float num2 = (float) Math.Sqrt(1.0 + (double) matrix.m11 - (double) matrix.m00 - (double) matrix.m22);
  422. float num3 = 0.5f / num2;
  423. quaternion.x = (matrix.m01 + matrix.m10) * num3;
  424. quaternion.y = 0.5f * num2;
  425. quaternion.z = (matrix.m12 + matrix.m21) * num3;
  426. quaternion.w = (matrix.m02 - matrix.m20) * num3;
  427. return quaternion;
  428. }
  429. float num4 = (float) Math.Sqrt(1.0 + (double) matrix.m22 - (double) matrix.m00 - (double) matrix.m11);
  430. float num5 = 0.5f / num4;
  431. quaternion.x = (matrix.m02 + matrix.m20) * num5;
  432. quaternion.y = (matrix.m12 + matrix.m21) * num5;
  433. quaternion.z = 0.5f * num4;
  434. quaternion.w = (matrix.m10 - matrix.m01) * num5;
  435. return quaternion;
  436. }
  437. public static void CreateFromRotationMatrix(ref Matrix4x4 matrix, out Quaternion result)
  438. {
  439. float num1 = matrix.m00 + matrix.m11 + matrix.m22;
  440. if ((double) num1 > 0.0)
  441. {
  442. float num2 = (float) Math.Sqrt((double) num1 + 1.0);
  443. result.w = num2 * 0.5f;
  444. float num3 = 0.5f / num2;
  445. result.x = (matrix.m21 - matrix.m12) * num3;
  446. result.y = (matrix.m02 - matrix.m20) * num3;
  447. result.z = (matrix.m10 - matrix.m01) * num3;
  448. }
  449. else if ((double) matrix.m00 >= (double) matrix.m11 && (double) matrix.m00 >= (double) matrix.m22)
  450. {
  451. float num2 = (float) Math.Sqrt(1.0 + (double) matrix.m00 - (double) matrix.m11 - (double) matrix.m22);
  452. float num3 = 0.5f / num2;
  453. result.x = 0.5f * num2;
  454. result.y = (matrix.m10 + matrix.m01) * num3;
  455. result.z = (matrix.m20 + matrix.m02) * num3;
  456. result.w = (matrix.m21 - matrix.m12) * num3;
  457. }
  458. else if ((double) matrix.m11 > (double) matrix.m22)
  459. {
  460. float num2 = (float) Math.Sqrt(1.0 + (double) matrix.m11 - (double) matrix.m00 - (double) matrix.m22);
  461. float num3 = 0.5f / num2;
  462. result.x = (matrix.m01 + matrix.m10) * num3;
  463. result.y = 0.5f * num2;
  464. result.z = (matrix.m12 + matrix.m21) * num3;
  465. result.w = (matrix.m02 - matrix.m20) * num3;
  466. }
  467. else
  468. {
  469. float num2 = (float) Math.Sqrt(1.0 + (double) matrix.m22 - (double) matrix.m00 - (double) matrix.m11);
  470. float num3 = 0.5f / num2;
  471. result.x = (matrix.m02 + matrix.m20) * num3;
  472. result.y = (matrix.m12 + matrix.m21) * num3;
  473. result.z = 0.5f * num2;
  474. result.w = (matrix.m10 - matrix.m01) * num3;
  475. }
  476. }
  477. public static float Dot(Quaternion quaternion1, Quaternion quaternion2)
  478. {
  479. return (float) ((double) quaternion1.x * (double) quaternion2.x + (double) quaternion1.y * (double) quaternion2.y +
  480. (double) quaternion1.z * (double) quaternion2.z + (double) quaternion1.w * (double) quaternion2.w);
  481. }
  482. public static void Dot(ref Quaternion quaternion1, ref Quaternion quaternion2, out float result)
  483. {
  484. result = (float) ((double) quaternion1.x * (double) quaternion2.x + (double) quaternion1.y * (double) quaternion2.y +
  485. (double) quaternion1.z * (double) quaternion2.z + (double) quaternion1.w * (double) quaternion2.w);
  486. }
  487. public static Quaternion Slerp(Quaternion quaternion1, Quaternion quaternion2, float amount)
  488. {
  489. float num1 = amount;
  490. float num2 = (float) ((double) quaternion1.x * (double) quaternion2.x + (double) quaternion1.y * (double) quaternion2.y +
  491. (double) quaternion1.z * (double) quaternion2.z + (double) quaternion1.w * (double) quaternion2.w);
  492. bool flag = false;
  493. if ((double) num2 < 0.0)
  494. {
  495. flag = true;
  496. num2 = -num2;
  497. }
  498. float num3;
  499. float num4;
  500. if ((double) num2 > 0.999998986721039)
  501. {
  502. num3 = 1f - num1;
  503. num4 = flag? -num1 : num1;
  504. }
  505. else
  506. {
  507. float num5 = (float) Math.Acos((double) num2);
  508. float num6 = (float) (1.0 / Math.Sin((double) num5));
  509. num3 = (float) Math.Sin((1.0 - (double) num1) * (double) num5) * num6;
  510. num4 = flag? (float) -Math.Sin((double) num1 * (double) num5) * num6 : (float) Math.Sin((double) num1 * (double) num5) * num6;
  511. }
  512. Quaternion quaternion;
  513. quaternion.x = (float) ((double) num3 * (double) quaternion1.x + (double) num4 * (double) quaternion2.x);
  514. quaternion.y = (float) ((double) num3 * (double) quaternion1.y + (double) num4 * (double) quaternion2.y);
  515. quaternion.z = (float) ((double) num3 * (double) quaternion1.z + (double) num4 * (double) quaternion2.z);
  516. quaternion.w = (float) ((double) num3 * (double) quaternion1.w + (double) num4 * (double) quaternion2.w);
  517. return quaternion;
  518. }
  519. public static void Slerp(ref Quaternion quaternion1, ref Quaternion quaternion2, float amount, out Quaternion result)
  520. {
  521. float num1 = amount;
  522. float num2 = (float) ((double) quaternion1.x * (double) quaternion2.x + (double) quaternion1.y * (double) quaternion2.y +
  523. (double) quaternion1.z * (double) quaternion2.z + (double) quaternion1.w * (double) quaternion2.w);
  524. bool flag = false;
  525. if ((double) num2 < 0.0)
  526. {
  527. flag = true;
  528. num2 = -num2;
  529. }
  530. float num3;
  531. float num4;
  532. if ((double) num2 > 0.999998986721039)
  533. {
  534. num3 = 1f - num1;
  535. num4 = flag? -num1 : num1;
  536. }
  537. else
  538. {
  539. float num5 = (float) Math.Acos((double) num2);
  540. float num6 = (float) (1.0 / Math.Sin((double) num5));
  541. num3 = (float) Math.Sin((1.0 - (double) num1) * (double) num5) * num6;
  542. num4 = flag? (float) -Math.Sin((double) num1 * (double) num5) * num6 : (float) Math.Sin((double) num1 * (double) num5) * num6;
  543. }
  544. result.x = (float) ((double) num3 * (double) quaternion1.x + (double) num4 * (double) quaternion2.x);
  545. result.y = (float) ((double) num3 * (double) quaternion1.y + (double) num4 * (double) quaternion2.y);
  546. result.z = (float) ((double) num3 * (double) quaternion1.z + (double) num4 * (double) quaternion2.z);
  547. result.w = (float) ((double) num3 * (double) quaternion1.w + (double) num4 * (double) quaternion2.w);
  548. }
  549. public static Quaternion Lerp(Quaternion quaternion1, Quaternion quaternion2, float amount)
  550. {
  551. float num1 = amount;
  552. float num2 = 1f - num1;
  553. Quaternion quaternion = new Quaternion();
  554. if ((double) quaternion1.x * (double) quaternion2.x + (double) quaternion1.y * (double) quaternion2.y +
  555. (double) quaternion1.z * (double) quaternion2.z + (double) quaternion1.w * (double) quaternion2.w >= 0.0)
  556. {
  557. quaternion.x = (float) ((double) num2 * (double) quaternion1.x + (double) num1 * (double) quaternion2.x);
  558. quaternion.y = (float) ((double) num2 * (double) quaternion1.y + (double) num1 * (double) quaternion2.y);
  559. quaternion.z = (float) ((double) num2 * (double) quaternion1.z + (double) num1 * (double) quaternion2.z);
  560. quaternion.w = (float) ((double) num2 * (double) quaternion1.w + (double) num1 * (double) quaternion2.w);
  561. }
  562. else
  563. {
  564. quaternion.x = (float) ((double) num2 * (double) quaternion1.x - (double) num1 * (double) quaternion2.x);
  565. quaternion.y = (float) ((double) num2 * (double) quaternion1.y - (double) num1 * (double) quaternion2.y);
  566. quaternion.z = (float) ((double) num2 * (double) quaternion1.z - (double) num1 * (double) quaternion2.z);
  567. quaternion.w = (float) ((double) num2 * (double) quaternion1.w - (double) num1 * (double) quaternion2.w);
  568. }
  569. float num3 = 1f / (float) Math.Sqrt((double) quaternion.x * (double) quaternion.x + (double) quaternion.y * (double) quaternion.y +
  570. (double) quaternion.z * (double) quaternion.z + (double) quaternion.w * (double) quaternion.w);
  571. quaternion.x *= num3;
  572. quaternion.y *= num3;
  573. quaternion.z *= num3;
  574. quaternion.w *= num3;
  575. return quaternion;
  576. }
  577. public static void Lerp(ref Quaternion quaternion1, ref Quaternion quaternion2, float amount, out Quaternion result)
  578. {
  579. float num1 = amount;
  580. float num2 = 1f - num1;
  581. if ((double) quaternion1.x * (double) quaternion2.x + (double) quaternion1.y * (double) quaternion2.y +
  582. (double) quaternion1.z * (double) quaternion2.z + (double) quaternion1.w * (double) quaternion2.w >= 0.0)
  583. {
  584. result.x = (float) ((double) num2 * (double) quaternion1.x + (double) num1 * (double) quaternion2.x);
  585. result.y = (float) ((double) num2 * (double) quaternion1.y + (double) num1 * (double) quaternion2.y);
  586. result.z = (float) ((double) num2 * (double) quaternion1.z + (double) num1 * (double) quaternion2.z);
  587. result.w = (float) ((double) num2 * (double) quaternion1.w + (double) num1 * (double) quaternion2.w);
  588. }
  589. else
  590. {
  591. result.x = (float) ((double) num2 * (double) quaternion1.x - (double) num1 * (double) quaternion2.x);
  592. result.y = (float) ((double) num2 * (double) quaternion1.y - (double) num1 * (double) quaternion2.y);
  593. result.z = (float) ((double) num2 * (double) quaternion1.z - (double) num1 * (double) quaternion2.z);
  594. result.w = (float) ((double) num2 * (double) quaternion1.w - (double) num1 * (double) quaternion2.w);
  595. }
  596. float num3 = 1f / (float) Math.Sqrt((double) result.x * (double) result.x + (double) result.y * (double) result.y +
  597. (double) result.z * (double) result.z + (double) result.w * (double) result.w);
  598. result.x *= num3;
  599. result.y *= num3;
  600. result.z *= num3;
  601. result.w *= num3;
  602. }
  603. public void Conjugate()
  604. {
  605. this.x = -this.x;
  606. this.y = -this.y;
  607. this.z = -this.z;
  608. }
  609. public static Quaternion Conjugate(Quaternion value)
  610. {
  611. Quaternion quaternion;
  612. quaternion.x = -value.x;
  613. quaternion.y = -value.y;
  614. quaternion.z = -value.z;
  615. quaternion.w = value.w;
  616. return quaternion;
  617. }
  618. public static void Conjugate(ref Quaternion value, out Quaternion result)
  619. {
  620. result.x = -value.x;
  621. result.y = -value.y;
  622. result.z = -value.z;
  623. result.w = value.w;
  624. }
  625. private static float Angle(Quaternion a, Quaternion b)
  626. {
  627. return (float) (Math.Acos((double) Math.Min(Math.Abs(Quaternion.Dot(a, b)), 1f)) * 2.0 * 57.2957801818848);
  628. }
  629. private static void Angle(ref Quaternion a, ref Quaternion b, out float result)
  630. {
  631. result = (float) (Math.Acos((double) Math.Min(Math.Abs(Quaternion.Dot(a, b)), 1f)) * 2.0 * 57.2957801818848);
  632. }
  633. public static Quaternion Negate(Quaternion quaternion)
  634. {
  635. Quaternion quaternion1;
  636. quaternion1.x = -quaternion.x;
  637. quaternion1.y = -quaternion.y;
  638. quaternion1.z = -quaternion.z;
  639. quaternion1.w = -quaternion.w;
  640. return quaternion1;
  641. }
  642. public static void Negate(ref Quaternion quaternion, out Quaternion result)
  643. {
  644. result.x = -quaternion.x;
  645. result.y = -quaternion.y;
  646. result.z = -quaternion.z;
  647. result.w = -quaternion.w;
  648. }
  649. public static Quaternion Sub(Quaternion quaternion1, Quaternion quaternion2)
  650. {
  651. Quaternion quaternion;
  652. quaternion.x = quaternion1.x - quaternion2.x;
  653. quaternion.y = quaternion1.y - quaternion2.y;
  654. quaternion.z = quaternion1.z - quaternion2.z;
  655. quaternion.w = quaternion1.w - quaternion2.w;
  656. return quaternion;
  657. }
  658. public static void Sub(ref Quaternion quaternion1, ref Quaternion quaternion2, out Quaternion result)
  659. {
  660. result.x = quaternion1.x - quaternion2.x;
  661. result.y = quaternion1.y - quaternion2.y;
  662. result.z = quaternion1.z - quaternion2.z;
  663. result.w = quaternion1.w - quaternion2.w;
  664. }
  665. public static Vector3 Rotate(Quaternion rotation, Vector3 vector3)
  666. {
  667. float num1 = rotation.x * 2f;
  668. float num2 = rotation.y * 2f;
  669. float num3 = rotation.z * 2f;
  670. float num4 = rotation.x * num1;
  671. float num5 = rotation.y * num2;
  672. float num6 = rotation.z * num3;
  673. float num7 = rotation.x * num2;
  674. float num8 = rotation.x * num3;
  675. float num9 = rotation.y * num3;
  676. float num10 = rotation.w * num1;
  677. float num11 = rotation.w * num2;
  678. float num12 = rotation.w * num3;
  679. Vector3 vector3_1;
  680. vector3_1.x = (float) ((1.0 - ((double) num5 + (double) num6)) * (double) vector3.x +
  681. ((double) num7 - (double) num12) * (double) vector3.y + ((double) num8 + (double) num11) * (double) vector3.z);
  682. vector3_1.y = (float) (((double) num7 + (double) num12) * (double) vector3.x +
  683. (1.0 - ((double) num4 + (double) num6)) * (double) vector3.y + ((double) num9 - (double) num10) * (double) vector3.z);
  684. vector3_1.z = (float) (((double) num8 - (double) num11) * (double) vector3.x + ((double) num9 + (double) num10) * (double) vector3.y +
  685. (1.0 - ((double) num4 + (double) num5)) * (double) vector3.z);
  686. return vector3_1;
  687. }
  688. public static void Rotate(ref Quaternion rotation, ref Vector3 vector3, out Vector3 result)
  689. {
  690. float num1 = rotation.x * 2f;
  691. float num2 = rotation.y * 2f;
  692. float num3 = rotation.z * 2f;
  693. float num4 = rotation.x * num1;
  694. float num5 = rotation.y * num2;
  695. float num6 = rotation.z * num3;
  696. float num7 = rotation.x * num2;
  697. float num8 = rotation.x * num3;
  698. float num9 = rotation.y * num3;
  699. float num10 = rotation.w * num1;
  700. float num11 = rotation.w * num2;
  701. float num12 = rotation.w * num3;
  702. result.x = (float) ((1.0 - ((double) num5 + (double) num6)) * (double) vector3.x + ((double) num7 - (double) num12) * (double) vector3.y +
  703. ((double) num8 + (double) num11) * (double) vector3.z);
  704. result.y = (float) (((double) num7 + (double) num12) * (double) vector3.x + (1.0 - ((double) num4 + (double) num6)) * (double) vector3.y +
  705. ((double) num9 - (double) num10) * (double) vector3.z);
  706. result.z = (float) (((double) num8 - (double) num11) * (double) vector3.x + ((double) num9 + (double) num10) * (double) vector3.y +
  707. (1.0 - ((double) num4 + (double) num5)) * (double) vector3.z);
  708. }
  709. public static Quaternion Multiply(Quaternion quaternion1, Quaternion quaternion2)
  710. {
  711. float x1 = quaternion1.x;
  712. float y1 = quaternion1.y;
  713. float z1 = quaternion1.z;
  714. float w1 = quaternion1.w;
  715. float x2 = quaternion2.x;
  716. float y2 = quaternion2.y;
  717. float z2 = quaternion2.z;
  718. float w2 = quaternion2.w;
  719. float num1 = (float) ((double) y1 * (double) z2 - (double) z1 * (double) y2);
  720. float num2 = (float) ((double) z1 * (double) x2 - (double) x1 * (double) z2);
  721. float num3 = (float) ((double) x1 * (double) y2 - (double) y1 * (double) x2);
  722. float num4 = (float) ((double) x1 * (double) x2 + (double) y1 * (double) y2 + (double) z1 * (double) z2);
  723. Quaternion quaternion;
  724. quaternion.x = (float) ((double) x1 * (double) w2 + (double) x2 * (double) w1) + num1;
  725. quaternion.y = (float) ((double) y1 * (double) w2 + (double) y2 * (double) w1) + num2;
  726. quaternion.z = (float) ((double) z1 * (double) w2 + (double) z2 * (double) w1) + num3;
  727. quaternion.w = w1 * w2 - num4;
  728. return quaternion;
  729. }
  730. public static void Multiply(ref Quaternion quaternion1, ref Quaternion quaternion2, out Quaternion result)
  731. {
  732. float x1 = quaternion1.x;
  733. float y1 = quaternion1.y;
  734. float z1 = quaternion1.z;
  735. float w1 = quaternion1.w;
  736. float x2 = quaternion2.x;
  737. float y2 = quaternion2.y;
  738. float z2 = quaternion2.z;
  739. float w2 = quaternion2.w;
  740. float num1 = (float) ((double) y1 * (double) z2 - (double) z1 * (double) y2);
  741. float num2 = (float) ((double) z1 * (double) x2 - (double) x1 * (double) z2);
  742. float num3 = (float) ((double) x1 * (double) y2 - (double) y1 * (double) x2);
  743. float num4 = (float) ((double) x1 * (double) x2 + (double) y1 * (double) y2 + (double) z1 * (double) z2);
  744. result.x = (float) ((double) x1 * (double) w2 + (double) x2 * (double) w1) + num1;
  745. result.y = (float) ((double) y1 * (double) w2 + (double) y2 * (double) w1) + num2;
  746. result.z = (float) ((double) z1 * (double) w2 + (double) z2 * (double) w1) + num3;
  747. result.w = w1 * w2 - num4;
  748. }
  749. public static Quaternion operator -(Quaternion quaternion)
  750. {
  751. Quaternion quaternion1;
  752. quaternion1.x = -quaternion.x;
  753. quaternion1.y = -quaternion.y;
  754. quaternion1.z = -quaternion.z;
  755. quaternion1.w = -quaternion.w;
  756. return quaternion1;
  757. }
  758. public static bool operator ==(Quaternion quaternion1, Quaternion quaternion2)
  759. {
  760. if ((double) quaternion1.x == (double) quaternion2.x && (double) quaternion1.y == (double) quaternion2.y &&
  761. (double) quaternion1.z == (double) quaternion2.z)
  762. return (double) quaternion1.w == (double) quaternion2.w;
  763. return false;
  764. }
  765. public static bool operator !=(Quaternion quaternion1, Quaternion quaternion2)
  766. {
  767. if ((double) quaternion1.x == (double) quaternion2.x && (double) quaternion1.y == (double) quaternion2.y &&
  768. (double) quaternion1.z == (double) quaternion2.z)
  769. return (double) quaternion1.w != (double) quaternion2.w;
  770. return true;
  771. }
  772. public static Quaternion operator -(Quaternion quaternion1, Quaternion quaternion2)
  773. {
  774. Quaternion quaternion;
  775. quaternion.x = quaternion1.x - quaternion2.x;
  776. quaternion.y = quaternion1.y - quaternion2.y;
  777. quaternion.z = quaternion1.z - quaternion2.z;
  778. quaternion.w = quaternion1.w - quaternion2.w;
  779. return quaternion;
  780. }
  781. public static Quaternion operator *(Quaternion quaternion1, Quaternion quaternion2)
  782. {
  783. float x1 = quaternion1.x;
  784. float y1 = quaternion1.y;
  785. float z1 = quaternion1.z;
  786. float w1 = quaternion1.w;
  787. float x2 = quaternion2.x;
  788. float y2 = quaternion2.y;
  789. float z2 = quaternion2.z;
  790. float w2 = quaternion2.w;
  791. float num1 = (float) ((double) y1 * (double) z2 - (double) z1 * (double) y2);
  792. float num2 = (float) ((double) z1 * (double) x2 - (double) x1 * (double) z2);
  793. float num3 = (float) ((double) x1 * (double) y2 - (double) y1 * (double) x2);
  794. float num4 = (float) ((double) x1 * (double) x2 + (double) y1 * (double) y2 + (double) z1 * (double) z2);
  795. Quaternion quaternion;
  796. quaternion.x = (float) ((double) x1 * (double) w2 + (double) x2 * (double) w1) + num1;
  797. quaternion.y = (float) ((double) y1 * (double) w2 + (double) y2 * (double) w1) + num2;
  798. quaternion.z = (float) ((double) z1 * (double) w2 + (double) z2 * (double) w1) + num3;
  799. quaternion.w = w1 * w2 - num4;
  800. return quaternion;
  801. }
  802. public static Vector3 operator *(Quaternion rotation, Vector3 point)
  803. {
  804. float num1 = rotation.x * 2f;
  805. float num2 = rotation.y * 2f;
  806. float num3 = rotation.z * 2f;
  807. float num4 = rotation.x * num1;
  808. float num5 = rotation.y * num2;
  809. float num6 = rotation.z * num3;
  810. float num7 = rotation.x * num2;
  811. float num8 = rotation.x * num3;
  812. float num9 = rotation.y * num3;
  813. float num10 = rotation.w * num1;
  814. float num11 = rotation.w * num2;
  815. float num12 = rotation.w * num3;
  816. Vector3 vector3;
  817. vector3.x = (float) ((1.0 - ((double) num5 + (double) num6)) * (double) point.x + ((double) num7 - (double) num12) * (double) point.y + ((double) num8 + (double) num11) * (double) point.z);
  818. vector3.y = (float) (((double) num7 + (double) num12) * (double) point.x + (1.0 - ((double) num4 + (double) num6)) * (double) point.y + ((double) num9 - (double) num10) * (double) point.z);
  819. vector3.z = (float) (((double) num8 - (double) num11) * (double) point.x + ((double) num9 + (double) num10) * (double) point.y + (1.0 - ((double) num4 + (double) num5)) * (double) point.z);
  820. return vector3;
  821. }
  822. }
  823. }