FastChaCha7539EngineHelper.cs 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484
  1. #if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR) && BESTHTTP_WITH_BURST
  2. using System;
  3. using System.Runtime.CompilerServices;
  4. using Unity.Burst;
  5. using Unity.Burst.Intrinsics;
  6. using static Unity.Burst.Intrinsics.X86;
  7. using static Unity.Burst.Intrinsics.Arm;
  8. // https://github.com/sschoener/burst-simd-exercises/blob/main/Assets/Examples/2-sum-small-numbers-sse3/SumSmallNumbers_SSE3.cs
  9. // https://github.com/jratcliff63367/sse2neon/blob/master/SSE2NEON.h#L789
  10. namespace BestHTTP.Connections.TLS.Crypto.Impl
  11. {
  12. [BurstCompile]
  13. public unsafe static class FastChaCha7539EngineHelper
  14. {
  15. [MethodImpl(MethodImplOptions.AggressiveInlining)]
  16. public static void ProcessBlocks2(ReadOnlySpan<byte> input, Span<byte> output, uint[] state, int rounds, byte[] keyStream)
  17. {
  18. fixed (byte* pinput = input)
  19. fixed (byte* poutput = output)
  20. fixed (uint* pstate = state)
  21. fixed(byte* pkeyStream = keyStream)
  22. ProcessBlocks2Impl(pinput, input.Length, poutput, output.Length, pstate, state.Length, rounds, pkeyStream);
  23. }
  24. [MethodImpl(MethodImplOptions.AggressiveInlining)]
  25. [BurstCompile(CompileSynchronously = true)]
  26. private static void ProcessBlocks2Impl([NoAlias] byte* input, int inputLen, [NoAlias] byte* output, int outLen, [NoAlias] uint* state, int stateLen, int rounds, [NoAlias] byte* keyStream)
  27. {
  28. if (Avx2.IsAvx2Supported)
  29. {
  30. var t0 = new v128(state[0], state[1], state[2], state[3]); //Load128_UInt32(state.AsSpan());
  31. var t1 = new v128(state[4], state[5], state[6], state[7]); //Load128_UInt32(state.AsSpan(4));
  32. var t2 = new v128(state[8], state[9], state[10], state[11]); //Load128_UInt32(state.AsSpan(8));
  33. var t3 = new v128(state[12], state[13], state[14], state[15]); //Load128_UInt32(state.AsSpan(12));
  34. ++state[12];
  35. var t4 = new v128(state[12], state[13], state[14], state[15]); //Load128_UInt32(state.AsSpan(12));
  36. ++state[12];
  37. var x0 = new v256(t0, t0); //Vector256.Create(t0, t0);
  38. var x1 = new v256(t1, t1); //Vector256.Create(t1, t1);
  39. var x2 = new v256(t2, t2); //Vector256.Create(t2, t2);
  40. var x3 = new v256(t3, t4); //Vector256.Create(t3, t4);
  41. var v0 = x0;
  42. var v1 = x1;
  43. var v2 = x2;
  44. var v3 = x3;
  45. for (int i = rounds; i > 0; i -= 2)
  46. {
  47. v0 = Avx2.mm256_add_epi32(v0, v1);
  48. v3 = Avx2.mm256_xor_si256(v3, v0);
  49. v3 = Avx2.mm256_xor_si256(Avx2.mm256_slli_epi32(v3, 16), Avx2.mm256_srli_epi32(v3, 16));
  50. v2 = Avx2.mm256_add_epi32(v2, v3);
  51. v1 = Avx2.mm256_xor_si256(v1, v2);
  52. v1 = Avx2.mm256_xor_si256(Avx2.mm256_slli_epi32(v1, 12), Avx2.mm256_srli_epi32(v1, 20));
  53. v0 = Avx2.mm256_add_epi32(v0, v1);
  54. v3 = Avx2.mm256_xor_si256(v3, v0);
  55. v3 = Avx2.mm256_xor_si256(Avx2.mm256_slli_epi32(v3, 8), Avx2.mm256_srli_epi32(v3, 24));
  56. v2 = Avx2.mm256_add_epi32(v2, v3);
  57. v1 = Avx2.mm256_xor_si256(v1, v2);
  58. v1 = Avx2.mm256_xor_si256(Avx2.mm256_slli_epi32(v1, 7), Avx2.mm256_srli_epi32(v1, 25));
  59. v1 = Avx2.mm256_shuffle_epi32(v1, 0x39);
  60. v2 = Avx2.mm256_shuffle_epi32(v2, 0x4E);
  61. v3 = Avx2.mm256_shuffle_epi32(v3, 0x93);
  62. v0 = Avx2.mm256_add_epi32(v0, v1);
  63. v3 = Avx2.mm256_xor_si256(v3, v0);
  64. v3 = Avx2.mm256_xor_si256(Avx2.mm256_slli_epi32(v3, 16), Avx2.mm256_srli_epi32(v3, 16));
  65. v2 = Avx2.mm256_add_epi32(v2, v3);
  66. v1 = Avx2.mm256_xor_si256(v1, v2);
  67. v1 = Avx2.mm256_xor_si256(Avx2.mm256_slli_epi32(v1, 12), Avx2.mm256_srli_epi32(v1, 20));
  68. v0 = Avx2.mm256_add_epi32(v0, v1);
  69. v3 = Avx2.mm256_xor_si256(v3, v0);
  70. v3 = Avx2.mm256_xor_si256(Avx2.mm256_slli_epi32(v3, 8), Avx2.mm256_srli_epi32(v3, 24));
  71. v2 = Avx2.mm256_add_epi32(v2, v3);
  72. v1 = Avx2.mm256_xor_si256(v1, v2);
  73. v1 = Avx2.mm256_xor_si256(Avx2.mm256_slli_epi32(v1, 7), Avx2.mm256_srli_epi32(v1, 25));
  74. v1 = Avx2.mm256_shuffle_epi32(v1, 0x93);
  75. v2 = Avx2.mm256_shuffle_epi32(v2, 0x4E);
  76. v3 = Avx2.mm256_shuffle_epi32(v3, 0x39);
  77. }
  78. v0 = Avx2.mm256_add_epi32(v0, x0);
  79. v1 = Avx2.mm256_add_epi32(v1, x1);
  80. v2 = Avx2.mm256_add_epi32(v2, x2);
  81. v3 = Avx2.mm256_add_epi32(v3, x3);
  82. var n0 = Avx2.mm256_permute2x128_si256(v0, v1, 0x20);
  83. var n1 = Avx2.mm256_permute2x128_si256(v2, v3, 0x20);
  84. var n2 = Avx2.mm256_permute2x128_si256(v0, v1, 0x31);
  85. var n3 = Avx2.mm256_permute2x128_si256(v2, v3, 0x31);
  86. ulong* uInput = (ulong*)input;
  87. n0 = Avx2.mm256_xor_si256(n0, new v256(uInput[0], uInput[1], uInput[2], uInput[3])); // Load256_Byte(input)
  88. n1 = Avx2.mm256_xor_si256(n1, new v256(uInput[4], uInput[5], uInput[6], uInput[7])); // Load256_Byte(input[0x20..])
  89. n2 = Avx2.mm256_xor_si256(n2, new v256(uInput[8], uInput[9], uInput[10], uInput[11])); // Load256_Byte(input[0x40..])
  90. n3 = Avx2.mm256_xor_si256(n3, new v256(uInput[12], uInput[13], uInput[14], uInput[15])); // Load256_Byte(input[0x60..])
  91. ulong* uOutput = (ulong*)output;
  92. uOutput[0] = n0.ULong0; uOutput[1] = n0.ULong1; uOutput[2] = n0.ULong2; uOutput[3] = n0.ULong3; //Store256_Byte(n0, output);
  93. uOutput[4] = n1.ULong0; uOutput[5] = n1.ULong1; uOutput[6] = n1.ULong2; uOutput[7] = n1.ULong3; //Store256_Byte(n1, output[0x20..]);
  94. uOutput[8] = n2.ULong0; uOutput[9] = n2.ULong1; uOutput[10] = n2.ULong2; uOutput[11] = n2.ULong3; //Store256_Byte(n2, output[0x40..]);
  95. uOutput[12] = n3.ULong0; uOutput[13] = n3.ULong1; uOutput[14] = n3.ULong2; uOutput[15] = n3.ULong3; //Store256_Byte(n3, output[0x60..]);
  96. }
  97. else if (Sse2.IsSse2Supported)
  98. {
  99. var x0 = Sse2.loadu_si128(state); //new v128(state[0], state[1], state[2], state[3]); //Load128_UInt32(state.AsSpan());
  100. var x1 = Sse2.loadu_si128(state + 4); //new v128(state[4], state[5], state[6], state[7]); //Load128_UInt32(state.AsSpan(4));
  101. var x2 = Sse2.loadu_si128(state + 8); //new v128(state[8], state[9], state[10], state[11]); //Load128_UInt32(state.AsSpan(8));
  102. var x3 = Sse2.loadu_si128(state + 12); //new v128(state[12], state[13], state[14], state[15]); //Load128_UInt32(state.AsSpan(12));
  103. ++state[12];
  104. var v0 = x0;
  105. var v1 = x1;
  106. var v2 = x2;
  107. var v3 = x3;
  108. for (int i = rounds; i > 0; i -= 2)
  109. {
  110. v0 = Sse2.add_epi32(v0, v1);
  111. v3 = Sse2.xor_si128(v3, v0);
  112. v3 = Sse2.xor_si128(Sse2.slli_epi32(v3, 16), Sse2.srli_epi32(v3, 16));
  113. v2 = Sse2.add_epi32(v2, v3);
  114. v1 = Sse2.xor_si128(v1, v2);
  115. v1 = Sse2.xor_si128(Sse2.slli_epi32(v1, 12), Sse2.srli_epi32(v1, 20));
  116. v0 = Sse2.add_epi32(v0, v1);
  117. v3 = Sse2.xor_si128(v3, v0);
  118. v3 = Sse2.xor_si128(Sse2.slli_epi32(v3, 8), Sse2.srli_epi32(v3, 24));
  119. v2 = Sse2.add_epi32(v2, v3);
  120. v1 = Sse2.xor_si128(v1, v2);
  121. v1 = Sse2.xor_si128(Sse2.slli_epi32(v1, 7), Sse2.srli_epi32(v1, 25));
  122. v1 = Sse2.shuffle_epi32(v1, 0x39);
  123. v2 = Sse2.shuffle_epi32(v2, 0x4E);
  124. v3 = Sse2.shuffle_epi32(v3, 0x93);
  125. v0 = Sse2.add_epi32(v0, v1);
  126. v3 = Sse2.xor_si128(v3, v0);
  127. v3 = Sse2.xor_si128(Sse2.slli_epi32(v3, 16), Sse2.srli_epi32(v3, 16));
  128. v2 = Sse2.add_epi32(v2, v3);
  129. v1 = Sse2.xor_si128(v1, v2);
  130. v1 = Sse2.xor_si128(Sse2.slli_epi32(v1, 12), Sse2.srli_epi32(v1, 20));
  131. v0 = Sse2.add_epi32(v0, v1);
  132. v3 = Sse2.xor_si128(v3, v0);
  133. v3 = Sse2.xor_si128(Sse2.slli_epi32(v3, 8), Sse2.srli_epi32(v3, 24));
  134. v2 = Sse2.add_epi32(v2, v3);
  135. v1 = Sse2.xor_si128(v1, v2);
  136. v1 = Sse2.xor_si128(Sse2.slli_epi32(v1, 7), Sse2.srli_epi32(v1, 25));
  137. v1 = Sse2.shuffle_epi32(v1, 0x93);
  138. v2 = Sse2.shuffle_epi32(v2, 0x4E);
  139. v3 = Sse2.shuffle_epi32(v3, 0x39);
  140. }
  141. v0 = Sse2.add_epi32(v0, x0);
  142. v1 = Sse2.add_epi32(v1, x1);
  143. v2 = Sse2.add_epi32(v2, x2);
  144. v3 = Sse2.add_epi32(v3, x3);
  145. var n0 = Sse2.loadu_si128(input + 0x00); //Load128_Byte(input);
  146. var n1 = Sse2.loadu_si128(input + 0x10); //Load128_Byte(input[0x10..]);
  147. var n2 = Sse2.loadu_si128(input + 0x20); //Load128_Byte(input[0x20..]);
  148. var n3 = Sse2.loadu_si128(input + 0x30); //Load128_Byte(input[0x30..]);
  149. n0 = Sse2.xor_si128(n0, v0);
  150. n1 = Sse2.xor_si128(n1, v1);
  151. n2 = Sse2.xor_si128(n2, v2);
  152. n3 = Sse2.xor_si128(n3, v3);
  153. Sse2.storeu_si128(output + 0x00, n0); //Store128_Byte(n0, output);
  154. Sse2.storeu_si128(output + 0x10, n1); //Store128_Byte(n1, output[0x10..]);
  155. Sse2.storeu_si128(output + 0x20, n2); //Store128_Byte(n2, output[0x20..]);
  156. Sse2.storeu_si128(output + 0x30, n3); //Store128_Byte(n3, output[0x30..]);
  157. x3 = Sse2.loadu_si128(state + 12); // Load128_UInt32(state.AsSpan(12));
  158. ++state[12];
  159. v0 = x0;
  160. v1 = x1;
  161. v2 = x2;
  162. v3 = x3;
  163. for (int i = rounds; i > 0; i -= 2)
  164. {
  165. v0 = Sse2.add_epi32(v0, v1);
  166. v3 = Sse2.xor_si128(v3, v0);
  167. v3 = Sse2.xor_si128(Sse2.slli_epi32(v3, 16), Sse2.srli_epi32(v3, 16));
  168. v2 = Sse2.add_epi32(v2, v3);
  169. v1 = Sse2.xor_si128(v1, v2);
  170. v1 = Sse2.xor_si128(Sse2.slli_epi32(v1, 12), Sse2.srli_epi32(v1, 20));
  171. v0 = Sse2.add_epi32(v0, v1);
  172. v3 = Sse2.xor_si128(v3, v0);
  173. v3 = Sse2.xor_si128(Sse2.slli_epi32(v3, 8), Sse2.srli_epi32(v3, 24));
  174. v2 = Sse2.add_epi32(v2, v3);
  175. v1 = Sse2.xor_si128(v1, v2);
  176. v1 = Sse2.xor_si128(Sse2.slli_epi32(v1, 7), Sse2.srli_epi32(v1, 25));
  177. v1 = Sse2.shuffle_epi32(v1, 0x39);
  178. v2 = Sse2.shuffle_epi32(v2, 0x4E);
  179. v3 = Sse2.shuffle_epi32(v3, 0x93);
  180. v0 = Sse2.add_epi32(v0, v1);
  181. v3 = Sse2.xor_si128(v3, v0);
  182. v3 = Sse2.xor_si128(Sse2.slli_epi32(v3, 16), Sse2.srli_epi32(v3, 16));
  183. v2 = Sse2.add_epi32(v2, v3);
  184. v1 = Sse2.xor_si128(v1, v2);
  185. v1 = Sse2.xor_si128(Sse2.slli_epi32(v1, 12), Sse2.srli_epi32(v1, 20));
  186. v0 = Sse2.add_epi32(v0, v1);
  187. v3 = Sse2.xor_si128(v3, v0);
  188. v3 = Sse2.xor_si128(Sse2.slli_epi32(v3, 8), Sse2.srli_epi32(v3, 24));
  189. v2 = Sse2.add_epi32(v2, v3);
  190. v1 = Sse2.xor_si128(v1, v2);
  191. v1 = Sse2.xor_si128(Sse2.slli_epi32(v1, 7), Sse2.srli_epi32(v1, 25));
  192. v1 = Sse2.shuffle_epi32(v1, 0x93);
  193. v2 = Sse2.shuffle_epi32(v2, 0x4E);
  194. v3 = Sse2.shuffle_epi32(v3, 0x39);
  195. }
  196. v0 = Sse2.add_epi32(v0, x0);
  197. v1 = Sse2.add_epi32(v1, x1);
  198. v2 = Sse2.add_epi32(v2, x2);
  199. v3 = Sse2.add_epi32(v3, x3);
  200. n0 = Sse2.loadu_si128(input + 0x40); //Load128_Byte(input[0x40..]);
  201. n1 = Sse2.loadu_si128(input + 0x50); //Load128_Byte(input[0x50..]);
  202. n2 = Sse2.loadu_si128(input + 0x60); //Load128_Byte(input[0x60..]);
  203. n3 = Sse2.loadu_si128(input + 0x70); //Load128_Byte(input[0x70..]);
  204. n0 = Sse2.xor_si128(n0, v0);
  205. n1 = Sse2.xor_si128(n1, v1);
  206. n2 = Sse2.xor_si128(n2, v2);
  207. n3 = Sse2.xor_si128(n3, v3);
  208. Sse2.storeu_si128(output + 0x40, n0); //Store128_Byte(n0, output[0x40..]);
  209. Sse2.storeu_si128(output + 0x50, n1); //Store128_Byte(n1, output[0x50..]);
  210. Sse2.storeu_si128(output + 0x60, n2); //Store128_Byte(n2, output[0x60..]);
  211. Sse2.storeu_si128(output + 0x70, n3); //Store128_Byte(n3, output[0x70..]);
  212. }
  213. else if (Neon.IsNeonSupported)
  214. {
  215. var x0 = Neon.vld1q_u32(state); //new v128(state[0], state[1], state[2], state[3]); //Load128_UInt32(state.AsSpan());
  216. var x1 = Neon.vld1q_u32(state + 4); //new v128(state[4], state[5], state[6], state[7]); //Load128_UInt32(state.AsSpan(4));
  217. var x2 = Neon.vld1q_u32(state + 8); //new v128(state[8], state[9], state[10], state[11]); //Load128_UInt32(state.AsSpan(8));
  218. var x3 = Neon.vld1q_u32(state + 12);
  219. ++state[12];
  220. var v0 = x0;
  221. var v1 = x1;
  222. var v2 = x2;
  223. var v3 = x3;
  224. for (int i = rounds; i > 0; i -= 2)
  225. {
  226. v0 = Neon.vaddq_u32(v0, v1);
  227. v3 = Neon.veorq_u32(v3, v0);
  228. v3 = Neon.veorq_u32(Neon.vshlq_n_u32(v3, 16), Neon.vshrq_n_u32(v3, 16));
  229. v2 = Neon.vaddq_u32(v2, v3);
  230. v1 = Neon.veorq_u32(v1, v2);
  231. v1 = Neon.veorq_u32(Neon.vshlq_n_u32(v1, 12), Neon.vshrq_n_u32(v1, 20));
  232. v0 = Neon.vaddq_u32(v0, v1);
  233. v3 = Neon.veorq_u32(v3, v0);
  234. v3 = Neon.veorq_u32(Neon.vshlq_n_u32(v3, 8), Neon.vshrq_n_u32(v3, 24));
  235. v2 = Neon.vaddq_u32(v2, v3);
  236. v1 = Neon.veorq_u32(v1, v2);
  237. v1 = Neon.veorq_u32(Neon.vshlq_n_u32(v1, 7), Neon.vshrq_n_u32(v1, 25));
  238. ///*v1 = */Neon_shuffle_epi32(v1, 0x39, out v1);
  239. v128 ret;
  240. ret = Neon.vmovq_n_u32(Neon.vgetq_lane_u32(v1, (0x39) & 0x3));
  241. ret = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v1, ((0x39) >> 2) & 0x3), ret, 1);
  242. ret = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v1, ((0x39) >> 4) & 0x3), ret, 2);
  243. v1 = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v1, ((0x39) >> 6) & 0x3), ret, 3);
  244. ///*v2 = */Neon_shuffle_epi32(v2, 0x4E, out v2);
  245. ret = Neon.vmovq_n_u32(Neon.vgetq_lane_u32(v2, (0x4E) & 0x3));
  246. ret = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v2, ((0x4E) >> 2) & 0x3), ret, 1);
  247. ret = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v2, ((0x4E) >> 4) & 0x3), ret, 2);
  248. v2 = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v2, ((0x4E) >> 6) & 0x3), ret, 3);
  249. ///*v3 = */Neon_shuffle_epi32(v3, 0x93, out v3);
  250. ret = Neon.vmovq_n_u32(Neon.vgetq_lane_u32(v3, (0x93) & 0x3));
  251. ret = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v3, ((0x93) >> 2) & 0x3), ret, 1);
  252. ret = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v3, ((0x93) >> 4) & 0x3), ret, 2);
  253. v3 = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v3, ((0x93) >> 6) & 0x3), ret, 3);
  254. v0 = Neon.vaddq_u32(v0, v1);
  255. v3 = Neon.veorq_u32(v3, v0);
  256. v3 = Neon.veorq_u32(Neon.vshlq_n_u32(v3, 16), Neon.vshrq_n_u32(v3, 16));
  257. v2 = Neon.vaddq_u32(v2, v3);
  258. v1 = Neon.veorq_u32(v1, v2);
  259. v1 = Neon.veorq_u32(Neon.vshlq_n_u32(v1, 12), Neon.vshrq_n_u32(v1, 20));
  260. v0 = Neon.vaddq_u32(v0, v1);
  261. v3 = Neon.veorq_u32(v3, v0);
  262. v3 = Neon.veorq_u32(Neon.vshlq_n_u32(v3, 8), Neon.vshrq_n_u32(v3, 24));
  263. v2 = Neon.vaddq_u32(v2, v3);
  264. v1 = Neon.veorq_u32(v1, v2);
  265. v1 = Neon.veorq_u32(Neon.vshlq_n_u32(v1, 7), Neon.vshrq_n_u32(v1, 25));
  266. ///*v1 = */Neon_shuffle_epi32(v1, 0x93, out v1);
  267. ret = Neon.vmovq_n_u32(Neon.vgetq_lane_u32(v1, (0x93) & 0x3));
  268. ret = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v1, ((0x93) >> 2) & 0x3), ret, 1);
  269. ret = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v1, ((0x93) >> 4) & 0x3), ret, 2);
  270. v1 = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v1, ((0x93) >> 6) & 0x3), ret, 3);
  271. ///*v2 = */Neon_shuffle_epi32(v2, 0x4E, out v2);
  272. ret = Neon.vmovq_n_u32(Neon.vgetq_lane_u32(v2, (0x4E) & 0x3));
  273. ret = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v2, ((0x4E) >> 2) & 0x3), ret, 1);
  274. ret = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v2, ((0x4E) >> 4) & 0x3), ret, 2);
  275. v2 = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v2, ((0x4E) >> 6) & 0x3), ret, 3);
  276. ///*v3 = */Neon_shuffle_epi32(v3, 0x39, out v3);
  277. ret = Neon.vmovq_n_u32(Neon.vgetq_lane_u32(v3, (0x39) & 0x3));
  278. ret = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v3, ((0x39) >> 2) & 0x3), ret, 1);
  279. ret = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v3, ((0x39) >> 4) & 0x3), ret, 2);
  280. v3 = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v3, ((0x39) >> 6) & 0x3), ret, 3);
  281. }
  282. v0 = Neon.vaddq_u32(v0, x0);
  283. v1 = Neon.vaddq_u32(v1, x1);
  284. v2 = Neon.vaddq_u32(v2, x2);
  285. v3 = Neon.vaddq_u32(v3, x3);
  286. var n0 = Neon.vld1q_u32((uint*)(input + 0x00)); //Load128_Byte(input);
  287. var n1 = Neon.vld1q_u32((uint*)(input + 0x10)); //Load128_Byte(input[0x10..]);
  288. var n2 = Neon.vld1q_u32((uint*)(input + 0x20)); //Load128_Byte(input[0x20..]);
  289. var n3 = Neon.vld1q_u32((uint*)(input + 0x30)); //Load128_Byte(input[0x30..]);
  290. n0 = Neon.veorq_u32(n0, v0);
  291. n1 = Neon.veorq_u32(n1, v1);
  292. n2 = Neon.veorq_u32(n2, v2);
  293. n3 = Neon.veorq_u32(n3, v3);
  294. Neon.vst1q_u32((uint*)(output + 0x00), n0); //Store128_Byte(n0, output);
  295. Neon.vst1q_u32((uint*)(output + 0x10), n1); //Store128_Byte(n1, output[0x10..]);
  296. Neon.vst1q_u32((uint*)(output + 0x20), n2); //Store128_Byte(n2, output[0x20..]);
  297. Neon.vst1q_u32((uint*)(output + 0x30), n3); //Store128_Byte(n3, output[0x30..]);
  298. x3 = Neon.vld1q_u32(state + 12); // Load128_UInt32(state.AsSpan(12));
  299. ++state[12];
  300. v0 = x0;
  301. v1 = x1;
  302. v2 = x2;
  303. v3 = x3;
  304. for (int i = rounds; i > 0; i -= 2)
  305. {
  306. v0 = Neon.vaddq_u32(v0, v1);
  307. v3 = Neon.veorq_u32(v3, v0);
  308. v3 = Neon.veorq_u32(Neon.vshlq_n_u32(v3, 16), Neon.vshrq_n_u32(v3, 16));
  309. v2 = Neon.vaddq_u32(v2, v3);
  310. v1 = Neon.veorq_u32(v1, v2);
  311. v1 = Neon.veorq_u32(Neon.vshlq_n_u32(v1, 12), Neon.vshrq_n_u32(v1, 20));
  312. v0 = Neon.vaddq_u32(v0, v1);
  313. v3 = Neon.veorq_u32(v3, v0);
  314. v3 = Neon.veorq_u32(Neon.vshlq_n_u32(v3, 8), Neon.vshrq_n_u32(v3, 24));
  315. v2 = Neon.vaddq_u32(v2, v3);
  316. v1 = Neon.veorq_u32(v1, v2);
  317. v1 = Neon.veorq_u32(Neon.vshlq_n_u32(v1, 7), Neon.vshrq_n_u32(v1, 25));
  318. ///*v1 = */Neon_shuffle_epi32(v1, 0x39, out v1);
  319. v128 ret;
  320. ret = Neon.vmovq_n_u32(Neon.vgetq_lane_u32(v1, (0x39) & 0x3));
  321. ret = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v1, ((0x39) >> 2) & 0x3), ret, 1);
  322. ret = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v1, ((0x39) >> 4) & 0x3), ret, 2);
  323. v1 = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v1, ((0x39) >> 6) & 0x3), ret, 3);
  324. ///*v2 = */Neon_shuffle_epi32(v2, 0x4E, out v2);
  325. ret = Neon.vmovq_n_u32(Neon.vgetq_lane_u32(v2, (0x4E) & 0x3));
  326. ret = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v2, ((0x4E) >> 2) & 0x3), ret, 1);
  327. ret = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v2, ((0x4E) >> 4) & 0x3), ret, 2);
  328. v2 = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v2, ((0x4E) >> 6) & 0x3), ret, 3);
  329. ///*v3 = */Neon_shuffle_epi32(v3, 0x93, out v3);
  330. ret = Neon.vmovq_n_u32(Neon.vgetq_lane_u32(v3, (0x93) & 0x3));
  331. ret = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v3, ((0x93) >> 2) & 0x3), ret, 1);
  332. ret = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v3, ((0x93) >> 4) & 0x3), ret, 2);
  333. v3 = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v3, ((0x93) >> 6) & 0x3), ret, 3);
  334. v0 = Neon.vaddq_u32(v0, v1);
  335. v3 = Neon.veorq_u32(v3, v0);
  336. v3 = Neon.veorq_u32(Neon.vshlq_n_u32(v3, 16), Neon.vshrq_n_u32(v3, 16));
  337. v2 = Neon.vaddq_u32(v2, v3);
  338. v1 = Neon.veorq_u32(v1, v2);
  339. v1 = Neon.veorq_u32(Neon.vshlq_n_u32(v1, 12), Neon.vshrq_n_u32(v1, 20));
  340. v0 = Neon.vaddq_u32(v0, v1);
  341. v3 = Neon.veorq_u32(v3, v0);
  342. v3 = Neon.veorq_u32(Neon.vshlq_n_u32(v3, 8), Neon.vshrq_n_u32(v3, 24));
  343. v2 = Neon.vaddq_u32(v2, v3);
  344. v1 = Neon.veorq_u32(v1, v2);
  345. v1 = Neon.veorq_u32(Neon.vshlq_n_u32(v1, 7), Neon.vshrq_n_u32(v1, 25));
  346. ///*v1 = */Neon_shuffle_epi32(v1, 0x93, out v1);
  347. ret = Neon.vmovq_n_u32(Neon.vgetq_lane_u32(v1, (0x93) & 0x3));
  348. ret = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v1, ((0x93) >> 2) & 0x3), ret, 1);
  349. ret = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v1, ((0x93) >> 4) & 0x3), ret, 2);
  350. v1 = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v1, ((0x93) >> 6) & 0x3), ret, 3);
  351. ///*v2 = */Neon_shuffle_epi32(v2, 0x4E, out v2);
  352. ret = Neon.vmovq_n_u32(Neon.vgetq_lane_u32(v2, (0x4E) & 0x3));
  353. ret = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v2, ((0x4E) >> 2) & 0x3), ret, 1);
  354. ret = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v2, ((0x4E) >> 4) & 0x3), ret, 2);
  355. v2 = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v2, ((0x4E) >> 6) & 0x3), ret, 3);
  356. ///*v3 = */Neon_shuffle_epi32(v3, 0x39, out v3);
  357. ret = Neon.vmovq_n_u32(Neon.vgetq_lane_u32(v3, (0x39) & 0x3));
  358. ret = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v3, ((0x39) >> 2) & 0x3), ret, 1);
  359. ret = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v3, ((0x39) >> 4) & 0x3), ret, 2);
  360. v3 = Neon.vsetq_lane_u32(Neon.vgetq_lane_u32(v3, ((0x39) >> 6) & 0x3), ret, 3);
  361. }
  362. v0 = Neon.vaddq_u32(v0, x0);
  363. v1 = Neon.vaddq_u32(v1, x1);
  364. v2 = Neon.vaddq_u32(v2, x2);
  365. v3 = Neon.vaddq_u32(v3, x3);
  366. n0 = Neon.vld1q_u32((uint*)(input + 0x40)); //Load128_Byte(input[0x40..]);
  367. n1 = Neon.vld1q_u32((uint*)(input + 0x50)); //Load128_Byte(input[0x50..]);
  368. n2 = Neon.vld1q_u32((uint*)(input + 0x60)); //Load128_Byte(input[0x60..]);
  369. n3 = Neon.vld1q_u32((uint*)(input + 0x70)); //Load128_Byte(input[0x70..]);
  370. n0 = Neon.veorq_u32(n0, v0);
  371. n1 = Neon.veorq_u32(n1, v1);
  372. n2 = Neon.veorq_u32(n2, v2);
  373. n3 = Neon.veorq_u32(n3, v3);
  374. Neon.vst1q_u32((uint*)(output + 0x40), n0); //Store128_Byte(n0, output[0x40..]);
  375. Neon.vst1q_u32((uint*)(output + 0x50), n1); //Store128_Byte(n1, output[0x50..]);
  376. Neon.vst1q_u32((uint*)(output + 0x60), n2); //Store128_Byte(n2, output[0x60..]);
  377. Neon.vst1q_u32((uint*)(output + 0x70), n3); //Store128_Byte(n3, output[0x70..]);
  378. }
  379. else
  380. {
  381. // Inlined to two ImplProcessBlock calls:
  382. //ImplProcessBlock(input, output);
  383. //ImplProcessBlock(input[64..], output[64..]);
  384. FastChaChaEngineHelper.ChachaCoreImpl(rounds, state, keyStream);
  385. ++state[12];
  386. ulong* pulinput = (ulong*)input;
  387. ulong* puloutput = (ulong*)output;
  388. ulong* pulkeyStream = (ulong*)keyStream;
  389. puloutput[0] = pulkeyStream[0] ^ pulinput[0];
  390. puloutput[1] = pulkeyStream[1] ^ pulinput[1];
  391. puloutput[2] = pulkeyStream[2] ^ pulinput[2];
  392. puloutput[3] = pulkeyStream[3] ^ pulinput[3];
  393. puloutput[4] = pulkeyStream[4] ^ pulinput[4];
  394. puloutput[5] = pulkeyStream[5] ^ pulinput[5];
  395. puloutput[6] = pulkeyStream[6] ^ pulinput[6];
  396. puloutput[7] = pulkeyStream[7] ^ pulinput[7];
  397. FastChaChaEngineHelper.ChachaCoreImpl(rounds, state, keyStream);
  398. ++state[12];
  399. pulinput = (ulong*)&input[64];
  400. puloutput = (ulong*)&output[64];
  401. puloutput[0] = pulkeyStream[0] ^ pulinput[0];
  402. puloutput[1] = pulkeyStream[1] ^ pulinput[1];
  403. puloutput[2] = pulkeyStream[2] ^ pulinput[2];
  404. puloutput[3] = pulkeyStream[3] ^ pulinput[3];
  405. puloutput[4] = pulkeyStream[4] ^ pulinput[4];
  406. puloutput[5] = pulkeyStream[5] ^ pulinput[5];
  407. puloutput[6] = pulkeyStream[6] ^ pulinput[6];
  408. puloutput[7] = pulkeyStream[7] ^ pulinput[7];
  409. }
  410. }
  411. }
  412. }
  413. #endif