using System;
using System.Collections;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Diagnostics;
using System.Runtime.Versioning;
using System.Threading;
namespace ILRuntime.Other
{
///
/// This is a copy of the latest .NET framework 4.5 List implementation, with all extraneous checking removed.
///
///
[Serializable]
public class UncheckedList : IList, ICollection, IEnumerable, IEnumerable, IList, ICollection
{
private const int _defaultCapacity = 4;
private T[] _items;
private int _size;
private int _version;
[NonSerialized]
private Object _syncRoot;
private static readonly T[] _emptyArray = new T[0];
// Constructs a UncheckedList. The list is initially empty and has a capacity
// of zero. Upon adding the first element to the list the capacity is
// increased to _defaultCapacity, and then increased in multiples of two
// as required.
public UncheckedList()
{
_items = _emptyArray;
}
// Constructs a UncheckedList with a given initial capacity. The list is
// initially empty, but will have room for the given number of elements
// before any reallocations are required.
//
public UncheckedList(int capacity)
{
if (capacity == 0)
_items = _emptyArray;
else
_items = new T[capacity];
}
// Constructs a UncheckedList, copying the contents of the given collection. The
// size and capacity of the new list will both be equal to the size of the
// given collection.
//
public UncheckedList(IEnumerable collection)
{
ICollection c = collection as ICollection;
if (c != null)
{
int count = c.Count;
if (count == 0)
{
_items = _emptyArray;
}
else
{
_items = new T[count];
c.CopyTo(_items, 0);
_size = count;
}
}
else
{
_size = 0;
_items = _emptyArray;
AddEnumerable(collection);
}
}
// Gets and sets the capacity of this list. The capacity is the size of
// the internal array used to hold items. When set, the internal
// array of the list is reallocated to the given capacity.
//
public int Capacity
{
get
{
return _items.Length;
}
set
{
if (value != _items.Length)
{
if (value > 0)
{
T[] newItems = new T[value];
if (_size > 0)
{
Array.Copy(_items, 0, newItems, 0, _size);
}
_items = newItems;
}
else
{
_items = _emptyArray;
}
}
}
}
// Read-only property describing how many elements are in the UncheckedList.
public int Count
{
get
{
return _size;
}
}
bool System.Collections.IList.IsFixedSize
{
get { return false; }
}
// Is this UncheckedList read-only?
bool ICollection.IsReadOnly
{
get { return false; }
}
bool System.Collections.IList.IsReadOnly
{
get { return false; }
}
// Is this UncheckedList synchronized (thread-safe)?
bool System.Collections.ICollection.IsSynchronized
{
get { return false; }
}
// Synchronization root for this object.
Object System.Collections.ICollection.SyncRoot
{
get
{
if (_syncRoot == null)
{
System.Threading.Interlocked.CompareExchange(ref _syncRoot, new Object(), null);
}
return _syncRoot;
}
}
// Sets or Gets the element at the given index.
//
public T this[int index]
{
get
{
return _items[index];
}
set
{
_items[index] = value;
_version++;
}
}
private static bool IsCompatibleObject(object value)
{
// Non-null values are fine. Only accept nulls if T is a class or Nullable.
// Note that default(T) is not equal to null for value types except when T is Nullable.
return ((value is T) || (value == null && default(T) == null));
}
Object System.Collections.IList.this[int index]
{
get
{
return this[index];
}
set
{
try
{
this[index] = (T)value;
}
catch (InvalidCastException)
{
}
}
}
// Adds the given object to the end of this list. The size of the list is
// increased by one. If required, the capacity of the list is doubled
// before adding the new element.
public void Add(T item)
{
var array = _items;
var size = _size;
if ((uint)size < (uint)array.Length)
{
_size = size + 1;
array[size] = item;
}
else
{
AddWithResize(item);
}
}
// Non-inline from UncheckedList.Add to improve its code quality as uncommon path
private void AddWithResize(T item)
{
var size = _size;
EnsureCapacity(size + 1);
_size = size + 1;
_items[size] = item;
}
int System.Collections.IList.Add(Object item)
{
try
{
Add((T)item);
}
catch (InvalidCastException)
{
}
return Count - 1;
}
// Adds the elements of the given collection to the end of this list. If
// required, the capacity of the list is increased to twice the previous
// capacity or the new size, whichever is larger.
//
public void AddRange(IEnumerable collection)
{
InsertRange(_size, collection);
}
public ReadOnlyCollection AsReadOnly()
{
return new ReadOnlyCollection(this);
}
// Searches a section of the list for a given element using a binary search
// algorithm. Elements of the list are compared to the search value using
// the given IComparer interface. If comparer is null, elements of
// the list are compared to the search value using the IComparable
// interface, which in that case must be implemented by all elements of the
// list and the given search value. This method assumes that the given
// section of the list is already sorted; if this is not the case, the
// result will be incorrect.
//
// The method returns the index of the given value in the list. If the
// list does not contain the given value, the method returns a negative
// integer. The bitwise complement operator (~) can be applied to a
// negative result to produce the index of the first element (if any) that
// is larger than the given search value. This is also the index at which
// the search value should be inserted into the list in order for the list
// to remain sorted.
//
// The method uses the Array.BinarySearch method to perform the
// search.
//
public int BinarySearch(int index, int count, T item, IComparer comparer)
{
if (index < 0) return -1;
return Array.BinarySearch(_items, index, count, item, comparer);
}
public int BinarySearch(T item)
{
return BinarySearch(0, Count, item, null);
}
public int BinarySearch(T item, IComparer comparer)
{
return BinarySearch(0, Count, item, comparer);
}
// Clears the contents of UncheckedList.
public void Clear()
{
if (!typeof(T).IsValueType)
{
int size = _size;
_size = 0;
_version++;
if (size > 0)
{
Array.Clear(_items, 0, size); // Clear the elements so that the gc can reclaim the references.
}
}
else
{
_size = 0;
_version++;
}
}
// Contains returns true if the specified element is in the UncheckedList.
// It does a linear, O(n) search. Equality is determined by calling
// EqualityComparer.Default.Equals().
public bool Contains(T item)
{
// PERF: IndexOf calls Array.IndexOf, which internally
// calls EqualityComparer.Default.IndexOf, which
// is specialized for different types. This
// boosts performance since instead of making a
// virtual method call each iteration of the loop,
// via EqualityComparer.Default.Equals, we
// only make one virtual call to EqualityComparer.IndexOf.
return _size != 0 && IndexOf(item) != -1;
}
bool System.Collections.IList.Contains(Object item)
{
if (IsCompatibleObject(item))
{
return Contains((T)item);
}
return false;
}
public UncheckedList ConvertAll(Converter converter)
{
UncheckedList list = new UncheckedList(_size);
for (int i = 0; i < _size; i++)
{
list._items[i] = converter(_items[i]);
}
list._size = _size;
return list;
}
// Copies this UncheckedList into array, which must be of a
// compatible array type.
//
public void CopyTo(T[] array)
{
CopyTo(array, 0);
}
// Copies this UncheckedList into array, which must be of a
// compatible array type.
//
void System.Collections.ICollection.CopyTo(Array array, int arrayIndex)
{
try
{
// Array.Copy will check for NULL.
Array.Copy(_items, 0, array, arrayIndex, _size);
}
catch (ArrayTypeMismatchException)
{
}
}
// Copies a section of this list to the given array at the given index.
//
// The method uses the Array.Copy method to copy the elements.
//
public void CopyTo(int index, T[] array, int arrayIndex, int count)
{
// Delegate rest of error checking to Array.Copy.
Array.Copy(_items, index, array, arrayIndex, count);
}
public void CopyTo(T[] array, int arrayIndex)
{
// Delegate rest of error checking to Array.Copy.
Array.Copy(_items, 0, array, arrayIndex, _size);
}
// Ensures that the capacity of this list is at least the given minimum
// value. If the current capacity of the list is less than min, the
// capacity is increased to twice the current capacity or to min,
// whichever is larger.
private void EnsureCapacity(int min)
{
if (_items.Length < min)
{
int newCapacity = _items.Length == 0 ? _defaultCapacity : _items.Length * 2;
// Allow the list to grow to maximum possible capacity (~2G elements) before encountering overflow.
// Note that this check works even when _items.Length overflowed thanks to the (uint) cast
if ((uint) newCapacity > Int32.MaxValue) newCapacity = Int32.MaxValue;
if (newCapacity < min) newCapacity = min;
Capacity = newCapacity;
}
}
public bool Exists(Predicate match)
{
return FindIndex(match) != -1;
}
public T Find(Predicate match)
{
for (int i = 0; i < _size; i++)
{
if (match(_items[i]))
{
return _items[i];
}
}
return default(T);
}
public UncheckedList FindAll(Predicate match)
{
UncheckedList list = new UncheckedList();
for (int i = 0; i < _size; i++)
{
if (match(_items[i]))
{
list.Add(_items[i]);
}
}
return list;
}
public int FindIndex(Predicate match)
{
return FindIndex(0, _size, match);
}
public int FindIndex(int startIndex, Predicate match)
{
return FindIndex(startIndex, _size - startIndex, match);
}
public int FindIndex(int startIndex, int count, Predicate match)
{
int endIndex = startIndex + count;
for (int i = startIndex; i < endIndex; i++)
{
if (match(_items[i])) return i;
}
return -1;
}
public T FindLast(Predicate match)
{
for (int i = _size - 1; i >= 0; i--)
{
if (match(_items[i]))
{
return _items[i];
}
}
return default(T);
}
public int FindLastIndex(Predicate match)
{
return FindLastIndex(_size - 1, _size, match);
}
public int FindLastIndex(int startIndex, Predicate match)
{
return FindLastIndex(startIndex, startIndex + 1, match);
}
public int FindLastIndex(int startIndex, int count, Predicate match)
{
int endIndex = startIndex - count;
for (int i = startIndex; i > endIndex; i--)
{
if (match(_items[i]))
{
return i;
}
}
return -1;
}
public void ForEach(Action action)
{
int version = _version;
for (int i = 0; i < _size; i++)
{
if (version != _version)
{
break;
}
action(_items[i]);
}
}
// Returns an enumerator for this list with the given
// permission for removal of elements. If modifications made to the list
// while an enumeration is in progress, the MoveNext and
// GetObject methods of the enumerator will throw an exception.
//
public Enumerator GetEnumerator()
{
return new Enumerator(this);
}
IEnumerator IEnumerable.GetEnumerator()
{
return new Enumerator(this);
}
System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
{
return new Enumerator(this);
}
public UncheckedList GetRange(int index, int count)
{
UncheckedList list = new UncheckedList(count);
Array.Copy(_items, index, list._items, 0, count);
list._size = count;
return list;
}
// Returns the index of the first occurrence of a given value in a range of
// this list. The list is searched forwards from beginning to end.
// The elements of the list are compared to the given value using the
// Object.Equals method.
//
// This method uses the Array.IndexOf method to perform the
// search.
//
public int IndexOf(T item)
{
return Array.IndexOf(_items, item, 0, _size);
}
int System.Collections.IList.IndexOf(Object item)
{
if (IsCompatibleObject(item))
{
return IndexOf((T)item);
}
return -1;
}
// Returns the index of the first occurrence of a given value in a range of
// this list. The list is searched forwards, starting at index
// index and ending at count number of elements. The
// elements of the list are compared to the given value using the
// Object.Equals method.
//
// This method uses the Array.IndexOf method to perform the
// search.
//
public int IndexOf(T item, int index)
{
return Array.IndexOf(_items, item, index, _size - index);
}
// Returns the index of the first occurrence of a given value in a range of
// this list. The list is searched forwards, starting at index
// index and upto count number of elements. The
// elements of the list are compared to the given value using the
// Object.Equals method.
//
// This method uses the Array.IndexOf method to perform the
// search.
//
public int IndexOf(T item, int index, int count)
{
return Array.IndexOf(_items, item, index, count);
}
// Inserts an element into this list at a given index. The size of the list
// is increased by one. If required, the capacity of the list is doubled
// before inserting the new element.
//
public void Insert(int index, T item)
{
if (_size == _items.Length) EnsureCapacity(_size + 1);
if (index < _size)
{
Array.Copy(_items, index, _items, index + 1, _size - index);
}
_items[index] = item;
_size++;
_version++;
}
void System.Collections.IList.Insert(int index, Object item)
{
try
{
Insert(index, (T)item);
}
catch (InvalidCastException)
{
}
}
// Inserts the elements of the given collection at a given index. If
// required, the capacity of the list is increased to twice the previous
// capacity or the new size, whichever is larger. Ranges may be added
// to the end of the list by setting index to the UncheckedList's size.
//
public void InsertRange(int index, IEnumerable collection)
{
ICollection c = collection as ICollection;
if (c != null)
{ // if collection is ICollection
int count = c.Count;
if (count > 0)
{
EnsureCapacity(_size + count);
if (index < _size)
{
Array.Copy(_items, index, _items, index + count, _size - index);
}
// If we're inserting a UncheckedList into itself, we want to be able to deal with that.
if (this == c)
{
// Copy first part of _items to insert location
Array.Copy(_items, 0, _items, index, index);
// Copy last part of _items back to inserted location
Array.Copy(_items, index + count, _items, index * 2, _size - index);
}
else
{
c.CopyTo(_items, index);
}
_size += count;
}
}
else if (index < _size)
{
// We're inserting a lazy enumerable. Call Insert on each of the constituent items.
using (IEnumerator en = collection.GetEnumerator())
{
while (en.MoveNext())
{
Insert(index++, en.Current);
}
}
}
else
{
// We're adding a lazy enumerable because the index is at the end of this list.
AddEnumerable(collection);
}
_version++;
}
// Returns the index of the last occurrence of a given value in a range of
// this list. The list is searched backwards, starting at the end
// and ending at the first element in the list. The elements of the list
// are compared to the given value using the Object.Equals method.
//
// This method uses the Array.LastIndexOf method to perform the
// search.
//
public int LastIndexOf(T item)
{
if (_size == 0)
{ // Special case for empty list
return -1;
}
else
{
return LastIndexOf(item, _size - 1, _size);
}
}
// Returns the index of the last occurrence of a given value in a range of
// this list. The list is searched backwards, starting at index
// index and ending at the first element in the list. The
// elements of the list are compared to the given value using the
// Object.Equals method.
//
// This method uses the Array.LastIndexOf method to perform the
// search.
//
public int LastIndexOf(T item, int index)
{
return LastIndexOf(item, index, index + 1);
}
// Returns the index of the last occurrence of a given value in a range of
// this list. The list is searched backwards, starting at index
// index and upto count elements. The elements of
// the list are compared to the given value using the Object.Equals
// method.
//
// This method uses the Array.LastIndexOf method to perform the
// search.
//
public int LastIndexOf(T item, int index, int count)
{
if (_size == 0)
{ // Special case for empty list
return -1;
}
return Array.LastIndexOf(_items, item, index, count);
}
// Removes the element at the given index. The size of the list is
// decreased by one.
//
public bool Remove(T item)
{
int index = IndexOf(item);
if (index >= 0)
{
RemoveAt(index);
return true;
}
return false;
}
void System.Collections.IList.Remove(Object item)
{
if (IsCompatibleObject(item))
{
Remove((T)item);
}
}
// This method removes all items which matches the predicate.
// The complexity is O(n).
public int RemoveAll(Predicate match)
{
int freeIndex = 0; // the first free slot in items array
// Find the first item which needs to be removed.
while (freeIndex < _size && !match(_items[freeIndex])) freeIndex++;
if (freeIndex >= _size) return 0;
int current = freeIndex + 1;
while (current < _size)
{
// Find the first item which needs to be kept.
while (current < _size && match(_items[current])) current++;
if (current < _size)
{
// copy item to the free slot.
_items[freeIndex++] = _items[current++];
}
}
if (!typeof(T).IsValueType)
{
Array.Clear(_items, freeIndex, _size - freeIndex); // Clear the elements so that the gc can reclaim the references.
}
int result = _size - freeIndex;
_size = freeIndex;
_version++;
return result;
}
// Removes the element at the given index. The size of the list is
// decreased by one.
//
public void RemoveAt(int index)
{
_size--;
if (index < _size)
{
Array.Copy(_items, index + 1, _items, index, _size - index);
}
#if DEBUG
_items[_size] = default(T);
#endif
}
// Removes a range of elements from this list.
//
public void RemoveRange(int index, int count)
{
if (count > 0)
{
int i = _size;
_size -= count;
if (index < _size)
{
Array.Copy(_items, index + count, _items, index, _size - index);
}
#if DEBUG
Array.Clear(_items, _size, count);
#endif
}
}
// Reverses the elements in this list.
public void Reverse()
{
Reverse(0, Count);
}
// Reverses the elements in a range of this list. Following a call to this
// method, an element in the range given by index and count
// which was previously located at index i will now be located at
// index index + (index + count - i - 1).
//
public void Reverse(int index, int count)
{
if (count > 1)
{
Array.Reverse(_items, index, count);
}
_version++;
}
// Sorts the elements in this list. Uses the default comparer and
// Array.Sort.
public void Sort()
{
Sort(0, Count, null);
}
// Sorts the elements in this list. Uses Array.Sort with the
// provided comparer.
public void Sort(IComparer comparer)
{
Sort(0, Count, comparer);
}
// Sorts the elements in a section of this list. The sort compares the
// elements to each other using the given IComparer interface. If
// comparer is null, the elements are compared to each other using
// the IComparable interface, which in that case must be implemented by all
// elements of the list.
//
// This method uses the Array.Sort method to sort the elements.
//
public void Sort(int index, int count, IComparer comparer)
{
if (count > 1)
{
Array.Sort(_items, index, count, comparer);
}
_version++;
}
public void Sort(Comparison comparison)
{
throw new NotImplementedException();
/*if (_size > 1)
{
ArraySortHelper.Sort(_items, 0, _size, comparison);
}
_version++;*/
}
// ToArray returns an array containing the contents of the UncheckedList.
// This requires copying the UncheckedList, which is an O(n) operation.
public T[] ToArray()
{
if (_size == 0)
{
return _emptyArray;
}
T[] array = new T[_size];
Array.Copy(_items, 0, array, 0, _size);
return array;
}
// Sets the capacity of this list to the size of the list. This method can
// be used to minimize a list's memory overhead once it is known that no
// new elements will be added to the list. To completely clear a list and
// release all memory referenced by the list, execute the following
// statements:
//
// list.Clear();
// list.TrimExcess();
//
public void TrimExcess()
{
int threshold = (int)(((double)_items.Length) * 0.9);
if (_size < threshold)
{
Capacity = _size;
}
}
public bool TrueForAll(Predicate match)
{
for (int i = 0; i < _size; i++)
{
if (!match(_items[i]))
{
return false;
}
}
return true;
}
private void AddEnumerable(IEnumerable enumerable)
{
Debug.Assert(enumerable != null);
Debug.Assert(!(enumerable is ICollection), "We should have optimized for this beforehand.");
using (IEnumerator en = enumerable.GetEnumerator())
{
_version++; // Even if the enumerable has no items, we can update _version.
while (en.MoveNext())
{
// Capture Current before doing anything else. If this throws
// an exception, we want to make a clean break.
T current = en.Current;
if (_size == _items.Length)
{
EnsureCapacity(_size + 1);
}
_items[_size++] = current;
}
}
}
public struct Enumerator : IEnumerator, System.Collections.IEnumerator
{
private UncheckedList list;
private int index;
private int version;
private T current;
internal Enumerator(UncheckedList list)
{
this.list = list;
index = 0;
version = list._version;
current = default(T);
}
public void Dispose()
{
}
public bool MoveNext()
{
UncheckedList localUncheckedList = list;
if (version == localUncheckedList._version && ((uint)index < (uint)localUncheckedList._size))
{
current = localUncheckedList._items[index];
index++;
return true;
}
return MoveNextRare();
}
private bool MoveNextRare()
{
index = list._size + 1;
current = default(T);
return false;
}
public T Current
{
get
{
return current;
}
}
Object System.Collections.IEnumerator.Current
{
get
{
return Current;
}
}
void System.Collections.IEnumerator.Reset()
{
index = 0;
current = default(T);
}
}
}
}