using System; using System.Collections; using System.Collections.Generic; using System.Collections.ObjectModel; using System.Diagnostics; using System.Runtime.Versioning; using System.Threading; namespace ILRuntime.Other { /// /// This is a copy of the latest .NET framework 4.5 List implementation, with all extraneous checking removed. /// /// [Serializable] public class UncheckedList : IList, ICollection, IEnumerable, IEnumerable, IList, ICollection { private const int _defaultCapacity = 4; private T[] _items; private int _size; private int _version; [NonSerialized] private Object _syncRoot; private static readonly T[] _emptyArray = new T[0]; // Constructs a UncheckedList. The list is initially empty and has a capacity // of zero. Upon adding the first element to the list the capacity is // increased to _defaultCapacity, and then increased in multiples of two // as required. public UncheckedList() { _items = _emptyArray; } // Constructs a UncheckedList with a given initial capacity. The list is // initially empty, but will have room for the given number of elements // before any reallocations are required. // public UncheckedList(int capacity) { if (capacity == 0) _items = _emptyArray; else _items = new T[capacity]; } // Constructs a UncheckedList, copying the contents of the given collection. The // size and capacity of the new list will both be equal to the size of the // given collection. // public UncheckedList(IEnumerable collection) { ICollection c = collection as ICollection; if (c != null) { int count = c.Count; if (count == 0) { _items = _emptyArray; } else { _items = new T[count]; c.CopyTo(_items, 0); _size = count; } } else { _size = 0; _items = _emptyArray; AddEnumerable(collection); } } // Gets and sets the capacity of this list. The capacity is the size of // the internal array used to hold items. When set, the internal // array of the list is reallocated to the given capacity. // public int Capacity { get { return _items.Length; } set { if (value != _items.Length) { if (value > 0) { T[] newItems = new T[value]; if (_size > 0) { Array.Copy(_items, 0, newItems, 0, _size); } _items = newItems; } else { _items = _emptyArray; } } } } // Read-only property describing how many elements are in the UncheckedList. public int Count { get { return _size; } } bool System.Collections.IList.IsFixedSize { get { return false; } } // Is this UncheckedList read-only? bool ICollection.IsReadOnly { get { return false; } } bool System.Collections.IList.IsReadOnly { get { return false; } } // Is this UncheckedList synchronized (thread-safe)? bool System.Collections.ICollection.IsSynchronized { get { return false; } } // Synchronization root for this object. Object System.Collections.ICollection.SyncRoot { get { if (_syncRoot == null) { System.Threading.Interlocked.CompareExchange(ref _syncRoot, new Object(), null); } return _syncRoot; } } // Sets or Gets the element at the given index. // public T this[int index] { get { return _items[index]; } set { _items[index] = value; _version++; } } private static bool IsCompatibleObject(object value) { // Non-null values are fine. Only accept nulls if T is a class or Nullable. // Note that default(T) is not equal to null for value types except when T is Nullable. return ((value is T) || (value == null && default(T) == null)); } Object System.Collections.IList.this[int index] { get { return this[index]; } set { try { this[index] = (T)value; } catch (InvalidCastException) { } } } // Adds the given object to the end of this list. The size of the list is // increased by one. If required, the capacity of the list is doubled // before adding the new element. public void Add(T item) { var array = _items; var size = _size; if ((uint)size < (uint)array.Length) { _size = size + 1; array[size] = item; } else { AddWithResize(item); } } // Non-inline from UncheckedList.Add to improve its code quality as uncommon path private void AddWithResize(T item) { var size = _size; EnsureCapacity(size + 1); _size = size + 1; _items[size] = item; } int System.Collections.IList.Add(Object item) { try { Add((T)item); } catch (InvalidCastException) { } return Count - 1; } // Adds the elements of the given collection to the end of this list. If // required, the capacity of the list is increased to twice the previous // capacity or the new size, whichever is larger. // public void AddRange(IEnumerable collection) { InsertRange(_size, collection); } public ReadOnlyCollection AsReadOnly() { return new ReadOnlyCollection(this); } // Searches a section of the list for a given element using a binary search // algorithm. Elements of the list are compared to the search value using // the given IComparer interface. If comparer is null, elements of // the list are compared to the search value using the IComparable // interface, which in that case must be implemented by all elements of the // list and the given search value. This method assumes that the given // section of the list is already sorted; if this is not the case, the // result will be incorrect. // // The method returns the index of the given value in the list. If the // list does not contain the given value, the method returns a negative // integer. The bitwise complement operator (~) can be applied to a // negative result to produce the index of the first element (if any) that // is larger than the given search value. This is also the index at which // the search value should be inserted into the list in order for the list // to remain sorted. // // The method uses the Array.BinarySearch method to perform the // search. // public int BinarySearch(int index, int count, T item, IComparer comparer) { if (index < 0) return -1; return Array.BinarySearch(_items, index, count, item, comparer); } public int BinarySearch(T item) { return BinarySearch(0, Count, item, null); } public int BinarySearch(T item, IComparer comparer) { return BinarySearch(0, Count, item, comparer); } // Clears the contents of UncheckedList. public void Clear() { if (!typeof(T).IsValueType) { int size = _size; _size = 0; _version++; if (size > 0) { Array.Clear(_items, 0, size); // Clear the elements so that the gc can reclaim the references. } } else { _size = 0; _version++; } } // Contains returns true if the specified element is in the UncheckedList. // It does a linear, O(n) search. Equality is determined by calling // EqualityComparer.Default.Equals(). public bool Contains(T item) { // PERF: IndexOf calls Array.IndexOf, which internally // calls EqualityComparer.Default.IndexOf, which // is specialized for different types. This // boosts performance since instead of making a // virtual method call each iteration of the loop, // via EqualityComparer.Default.Equals, we // only make one virtual call to EqualityComparer.IndexOf. return _size != 0 && IndexOf(item) != -1; } bool System.Collections.IList.Contains(Object item) { if (IsCompatibleObject(item)) { return Contains((T)item); } return false; } public UncheckedList ConvertAll(Converter converter) { UncheckedList list = new UncheckedList(_size); for (int i = 0; i < _size; i++) { list._items[i] = converter(_items[i]); } list._size = _size; return list; } // Copies this UncheckedList into array, which must be of a // compatible array type. // public void CopyTo(T[] array) { CopyTo(array, 0); } // Copies this UncheckedList into array, which must be of a // compatible array type. // void System.Collections.ICollection.CopyTo(Array array, int arrayIndex) { try { // Array.Copy will check for NULL. Array.Copy(_items, 0, array, arrayIndex, _size); } catch (ArrayTypeMismatchException) { } } // Copies a section of this list to the given array at the given index. // // The method uses the Array.Copy method to copy the elements. // public void CopyTo(int index, T[] array, int arrayIndex, int count) { // Delegate rest of error checking to Array.Copy. Array.Copy(_items, index, array, arrayIndex, count); } public void CopyTo(T[] array, int arrayIndex) { // Delegate rest of error checking to Array.Copy. Array.Copy(_items, 0, array, arrayIndex, _size); } // Ensures that the capacity of this list is at least the given minimum // value. If the current capacity of the list is less than min, the // capacity is increased to twice the current capacity or to min, // whichever is larger. private void EnsureCapacity(int min) { if (_items.Length < min) { int newCapacity = _items.Length == 0 ? _defaultCapacity : _items.Length * 2; // Allow the list to grow to maximum possible capacity (~2G elements) before encountering overflow. // Note that this check works even when _items.Length overflowed thanks to the (uint) cast if ((uint) newCapacity > Int32.MaxValue) newCapacity = Int32.MaxValue; if (newCapacity < min) newCapacity = min; Capacity = newCapacity; } } public bool Exists(Predicate match) { return FindIndex(match) != -1; } public T Find(Predicate match) { for (int i = 0; i < _size; i++) { if (match(_items[i])) { return _items[i]; } } return default(T); } public UncheckedList FindAll(Predicate match) { UncheckedList list = new UncheckedList(); for (int i = 0; i < _size; i++) { if (match(_items[i])) { list.Add(_items[i]); } } return list; } public int FindIndex(Predicate match) { return FindIndex(0, _size, match); } public int FindIndex(int startIndex, Predicate match) { return FindIndex(startIndex, _size - startIndex, match); } public int FindIndex(int startIndex, int count, Predicate match) { int endIndex = startIndex + count; for (int i = startIndex; i < endIndex; i++) { if (match(_items[i])) return i; } return -1; } public T FindLast(Predicate match) { for (int i = _size - 1; i >= 0; i--) { if (match(_items[i])) { return _items[i]; } } return default(T); } public int FindLastIndex(Predicate match) { return FindLastIndex(_size - 1, _size, match); } public int FindLastIndex(int startIndex, Predicate match) { return FindLastIndex(startIndex, startIndex + 1, match); } public int FindLastIndex(int startIndex, int count, Predicate match) { int endIndex = startIndex - count; for (int i = startIndex; i > endIndex; i--) { if (match(_items[i])) { return i; } } return -1; } public void ForEach(Action action) { int version = _version; for (int i = 0; i < _size; i++) { if (version != _version) { break; } action(_items[i]); } } // Returns an enumerator for this list with the given // permission for removal of elements. If modifications made to the list // while an enumeration is in progress, the MoveNext and // GetObject methods of the enumerator will throw an exception. // public Enumerator GetEnumerator() { return new Enumerator(this); } IEnumerator IEnumerable.GetEnumerator() { return new Enumerator(this); } System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator() { return new Enumerator(this); } public UncheckedList GetRange(int index, int count) { UncheckedList list = new UncheckedList(count); Array.Copy(_items, index, list._items, 0, count); list._size = count; return list; } // Returns the index of the first occurrence of a given value in a range of // this list. The list is searched forwards from beginning to end. // The elements of the list are compared to the given value using the // Object.Equals method. // // This method uses the Array.IndexOf method to perform the // search. // public int IndexOf(T item) { return Array.IndexOf(_items, item, 0, _size); } int System.Collections.IList.IndexOf(Object item) { if (IsCompatibleObject(item)) { return IndexOf((T)item); } return -1; } // Returns the index of the first occurrence of a given value in a range of // this list. The list is searched forwards, starting at index // index and ending at count number of elements. The // elements of the list are compared to the given value using the // Object.Equals method. // // This method uses the Array.IndexOf method to perform the // search. // public int IndexOf(T item, int index) { return Array.IndexOf(_items, item, index, _size - index); } // Returns the index of the first occurrence of a given value in a range of // this list. The list is searched forwards, starting at index // index and upto count number of elements. The // elements of the list are compared to the given value using the // Object.Equals method. // // This method uses the Array.IndexOf method to perform the // search. // public int IndexOf(T item, int index, int count) { return Array.IndexOf(_items, item, index, count); } // Inserts an element into this list at a given index. The size of the list // is increased by one. If required, the capacity of the list is doubled // before inserting the new element. // public void Insert(int index, T item) { if (_size == _items.Length) EnsureCapacity(_size + 1); if (index < _size) { Array.Copy(_items, index, _items, index + 1, _size - index); } _items[index] = item; _size++; _version++; } void System.Collections.IList.Insert(int index, Object item) { try { Insert(index, (T)item); } catch (InvalidCastException) { } } // Inserts the elements of the given collection at a given index. If // required, the capacity of the list is increased to twice the previous // capacity or the new size, whichever is larger. Ranges may be added // to the end of the list by setting index to the UncheckedList's size. // public void InsertRange(int index, IEnumerable collection) { ICollection c = collection as ICollection; if (c != null) { // if collection is ICollection int count = c.Count; if (count > 0) { EnsureCapacity(_size + count); if (index < _size) { Array.Copy(_items, index, _items, index + count, _size - index); } // If we're inserting a UncheckedList into itself, we want to be able to deal with that. if (this == c) { // Copy first part of _items to insert location Array.Copy(_items, 0, _items, index, index); // Copy last part of _items back to inserted location Array.Copy(_items, index + count, _items, index * 2, _size - index); } else { c.CopyTo(_items, index); } _size += count; } } else if (index < _size) { // We're inserting a lazy enumerable. Call Insert on each of the constituent items. using (IEnumerator en = collection.GetEnumerator()) { while (en.MoveNext()) { Insert(index++, en.Current); } } } else { // We're adding a lazy enumerable because the index is at the end of this list. AddEnumerable(collection); } _version++; } // Returns the index of the last occurrence of a given value in a range of // this list. The list is searched backwards, starting at the end // and ending at the first element in the list. The elements of the list // are compared to the given value using the Object.Equals method. // // This method uses the Array.LastIndexOf method to perform the // search. // public int LastIndexOf(T item) { if (_size == 0) { // Special case for empty list return -1; } else { return LastIndexOf(item, _size - 1, _size); } } // Returns the index of the last occurrence of a given value in a range of // this list. The list is searched backwards, starting at index // index and ending at the first element in the list. The // elements of the list are compared to the given value using the // Object.Equals method. // // This method uses the Array.LastIndexOf method to perform the // search. // public int LastIndexOf(T item, int index) { return LastIndexOf(item, index, index + 1); } // Returns the index of the last occurrence of a given value in a range of // this list. The list is searched backwards, starting at index // index and upto count elements. The elements of // the list are compared to the given value using the Object.Equals // method. // // This method uses the Array.LastIndexOf method to perform the // search. // public int LastIndexOf(T item, int index, int count) { if (_size == 0) { // Special case for empty list return -1; } return Array.LastIndexOf(_items, item, index, count); } // Removes the element at the given index. The size of the list is // decreased by one. // public bool Remove(T item) { int index = IndexOf(item); if (index >= 0) { RemoveAt(index); return true; } return false; } void System.Collections.IList.Remove(Object item) { if (IsCompatibleObject(item)) { Remove((T)item); } } // This method removes all items which matches the predicate. // The complexity is O(n). public int RemoveAll(Predicate match) { int freeIndex = 0; // the first free slot in items array // Find the first item which needs to be removed. while (freeIndex < _size && !match(_items[freeIndex])) freeIndex++; if (freeIndex >= _size) return 0; int current = freeIndex + 1; while (current < _size) { // Find the first item which needs to be kept. while (current < _size && match(_items[current])) current++; if (current < _size) { // copy item to the free slot. _items[freeIndex++] = _items[current++]; } } if (!typeof(T).IsValueType) { Array.Clear(_items, freeIndex, _size - freeIndex); // Clear the elements so that the gc can reclaim the references. } int result = _size - freeIndex; _size = freeIndex; _version++; return result; } // Removes the element at the given index. The size of the list is // decreased by one. // public void RemoveAt(int index) { _size--; if (index < _size) { Array.Copy(_items, index + 1, _items, index, _size - index); } #if DEBUG _items[_size] = default(T); #endif } // Removes a range of elements from this list. // public void RemoveRange(int index, int count) { if (count > 0) { int i = _size; _size -= count; if (index < _size) { Array.Copy(_items, index + count, _items, index, _size - index); } #if DEBUG Array.Clear(_items, _size, count); #endif } } // Reverses the elements in this list. public void Reverse() { Reverse(0, Count); } // Reverses the elements in a range of this list. Following a call to this // method, an element in the range given by index and count // which was previously located at index i will now be located at // index index + (index + count - i - 1). // public void Reverse(int index, int count) { if (count > 1) { Array.Reverse(_items, index, count); } _version++; } // Sorts the elements in this list. Uses the default comparer and // Array.Sort. public void Sort() { Sort(0, Count, null); } // Sorts the elements in this list. Uses Array.Sort with the // provided comparer. public void Sort(IComparer comparer) { Sort(0, Count, comparer); } // Sorts the elements in a section of this list. The sort compares the // elements to each other using the given IComparer interface. If // comparer is null, the elements are compared to each other using // the IComparable interface, which in that case must be implemented by all // elements of the list. // // This method uses the Array.Sort method to sort the elements. // public void Sort(int index, int count, IComparer comparer) { if (count > 1) { Array.Sort(_items, index, count, comparer); } _version++; } public void Sort(Comparison comparison) { throw new NotImplementedException(); /*if (_size > 1) { ArraySortHelper.Sort(_items, 0, _size, comparison); } _version++;*/ } // ToArray returns an array containing the contents of the UncheckedList. // This requires copying the UncheckedList, which is an O(n) operation. public T[] ToArray() { if (_size == 0) { return _emptyArray; } T[] array = new T[_size]; Array.Copy(_items, 0, array, 0, _size); return array; } // Sets the capacity of this list to the size of the list. This method can // be used to minimize a list's memory overhead once it is known that no // new elements will be added to the list. To completely clear a list and // release all memory referenced by the list, execute the following // statements: // // list.Clear(); // list.TrimExcess(); // public void TrimExcess() { int threshold = (int)(((double)_items.Length) * 0.9); if (_size < threshold) { Capacity = _size; } } public bool TrueForAll(Predicate match) { for (int i = 0; i < _size; i++) { if (!match(_items[i])) { return false; } } return true; } private void AddEnumerable(IEnumerable enumerable) { Debug.Assert(enumerable != null); Debug.Assert(!(enumerable is ICollection), "We should have optimized for this beforehand."); using (IEnumerator en = enumerable.GetEnumerator()) { _version++; // Even if the enumerable has no items, we can update _version. while (en.MoveNext()) { // Capture Current before doing anything else. If this throws // an exception, we want to make a clean break. T current = en.Current; if (_size == _items.Length) { EnsureCapacity(_size + 1); } _items[_size++] = current; } } } public struct Enumerator : IEnumerator, System.Collections.IEnumerator { private UncheckedList list; private int index; private int version; private T current; internal Enumerator(UncheckedList list) { this.list = list; index = 0; version = list._version; current = default(T); } public void Dispose() { } public bool MoveNext() { UncheckedList localUncheckedList = list; if (version == localUncheckedList._version && ((uint)index < (uint)localUncheckedList._size)) { current = localUncheckedList._items[index]; index++; return true; } return MoveNextRare(); } private bool MoveNextRare() { index = list._size + 1; current = default(T); return false; } public T Current { get { return current; } } Object System.Collections.IEnumerator.Current { get { return Current; } } void System.Collections.IEnumerator.Reset() { index = 0; current = default(T); } } } }